2 research outputs found

    Birkhoff-von-Neumann Switches with Deflection-Compensated Mechanism

    Full text link
    Despite the high throughput and low complexity achieved by input scheduling based on Birkhoff-von-Neumann (BvN) decomposition; the performance of the BvN switch becomes less predictable when the input traffic is bursty. In this paper, we propose a deflection-compensated BvN (D-BvN) switch architecture to enhance the quasi-static scheduling based on BvN decomposition. The D-BvN switches provide capacity guarantee for virtual circuits (VCs) and deflect bursty traffic when overflow occurs. The deflection scheme is devised to offset the excessive buffer requirement of each VC when input traffic is bursty. The design of our conditional deflection mechanism is based on the fact that it is unlikely that the traffic input to VCs is all bursty at the same time; most likely some starving VCs have spare capacities when some other VCs are in the overflow state. The proposed algorithm makes full use of the spare capacities of those starving VCs to deflect the overflow traffic to other inputs and provide bandwidth for the deflected traffic to re-access the desired VC. Our analysis and simulation show that this deflection-compensated mechanism can support BvN switches to achieve close to 100% throughput of offered load even with bursty input traffic, and reduces the average end-to-end delay and delay jitter. Also, our result indicates that the packet out-of-sequence probability due to deflection of overflow traffic is negligible, thus only a small re-sequencing buffer is needed at each output port

    The Mathematical Parallels Between Packet Switching and Information Transmission

    Full text link
    All communication networks comprise of transmission systems and switching systems, even though they are usually treated as two separate issues. Communication channels are generally disturbed by noise from various sources. In circuit switched networks, reliable communication requires the error-tolerant transmission of bits over noisy channels. In packet switched networks, however, not only can bits be corrupted with noise, but resources along connection paths are also subject to contention. Thus, quality of service (QoS) is determined by buffer delays and packet losses. The theme of this paper is to show that transmission noise and packet contention actually have similar characteristics and can be tamed by comparable means to achieve reliable communication, and a number of analogies between switching and transmission are identified. The sampling theorem of bandlimited signals provides the cornerstone of digital communication and signal processing. Recently, the Birkhoff-von Neumann decomposition of traffic matrices has been widely applied to packet switches. With respect to the complexity reduction of packet switching, we show that the decomposition of a doubly stochastic traffic matrix plays a similar role to that of the sampling theorem in digital transmission. We conclude that packet switching systems are governed by mathematical laws that are similar to those of digital transmission systems as envisioned by Shannon in his seminal 1948 paper, A Mathematical Theory of Communication.Comment: 21 pages, 25 figures, Submitted to IEEE Transactions on Information Theor
    corecore