8,042 research outputs found

    Statistical Guarantees for Regularized Neural Networks

    Full text link
    Neural networks have become standard tools in the analysis of data, but they lack comprehensive mathematical theories. For example, there are very few statistical guarantees for learning neural networks from data, especially for classes of estimators that are used in practice or at least similar to such. In this paper, we develop a general statistical guarantee for estimators that consist of a least-squares term and a regularizer. We then exemplify this guarantee with β„“1\ell_1-regularization, showing that the corresponding prediction error increases at most sub-linearly in the number of layers and at most logarithmically in the total number of parameters. Our results establish a mathematical basis for regularized estimation of neural networks, and they deepen our mathematical understanding of neural networks and deep learning more generally

    Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview

    Full text link
    Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.Comment: Invited overview articl

    Estimation of High-Dimensional Graphical Models Using Regularized Score Matching

    Full text link
    Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvarinen (2005), and subsequently extended in Hyvarinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under β„“1\ell_1 regularization. Under suitable irrepresentability conditions, we show that β„“1\ell_1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models

    Provable Guarantees for Gradient-Based Meta-Learning

    Full text link
    We study the problem of meta-learning through the lens of online convex optimization, developing a meta-algorithm bridging the gap between popular gradient-based meta-learning and classical regularization-based multi-task transfer methods. Our method is the first to simultaneously satisfy good sample efficiency guarantees in the convex setting, with generalization bounds that improve with task-similarity, while also being computationally scalable to modern deep learning architectures and the many-task setting. Despite its simplicity, the algorithm matches, up to a constant factor, a lower bound on the performance of any such parameter-transfer method under natural task similarity assumptions. We use experiments in both convex and deep learning settings to verify and demonstrate the applicability of our theory.Comment: ICML 201

    Learning Feature Nonlinearities with Non-Convex Regularized Binned Regression

    Full text link
    For various applications, the relations between the dependent and independent variables are highly nonlinear. Consequently, for large scale complex problems, neural networks and regression trees are commonly preferred over linear models such as Lasso. This work proposes learning the feature nonlinearities by binning feature values and finding the best fit in each quantile using non-convex regularized linear regression. The algorithm first captures the dependence between neighboring quantiles by enforcing smoothness via piecewise-constant/linear approximation and then selects a sparse subset of good features. We prove that the proposed algorithm is statistically and computationally efficient. In particular, it achieves linear rate of convergence while requiring near-minimal number of samples. Evaluations on synthetic and real datasets demonstrate that algorithm is competitive with current state-of-the-art and accurately learns feature nonlinearities. Finally, we explore an interesting connection between the binning stage of our algorithm and sparse Johnson-Lindenstrauss matrices.Comment: 22 pages, 7 figure

    A Unified Framework for Training Neural Networks

    Full text link
    The lack of mathematical tractability of Deep Neural Networks (DNNs) has hindered progress towards having a unified convergence analysis of training algorithms, in the general setting. We propose a unified optimization framework for training different types of DNNs, and establish its convergence for arbitrary loss, activation, and regularization functions, assumed to be smooth. We show that framework generalizes well-known first- and second-order training methods, and thus allows us to show the convergence of these methods for various DNN architectures and learning tasks, as a special case of our approach. We discuss some of its applications in training various DNN architectures (e.g., feed-forward, convolutional, linear networks), to regression and classification tasks.Comment: 15 pages, submitted to NIPS 201

    Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models

    Full text link
    We consider the problem of learning the underlying graph of an unknown Ising model on p spins from a collection of i.i.d. samples generated from the model. We suggest a new estimator that is computationally efficient and requires a number of samples that is near-optimal with respect to previously established information-theoretic lower-bound. Our statistical estimator has a physical interpretation in terms of "interaction screening". The estimator is consistent and is efficiently implemented using convex optimization. We prove that with appropriate regularization, the estimator recovers the underlying graph using a number of samples that is logarithmic in the system size p and exponential in the maximum coupling-intensity and maximum node-degree.Comment: To be published in Advances in Neural Information Processing Systems 3

    To Drop or Not to Drop: Robustness, Consistency and Differential Privacy Properties of Dropout

    Full text link
    Training deep belief networks (DBNs) requires optimizing a non-convex function with an extremely large number of parameters. Naturally, existing gradient descent (GD) based methods are prone to arbitrarily poor local minima. In this paper, we rigorously show that such local minima can be avoided (upto an approximation error) by using the dropout technique, a widely used heuristic in this domain. In particular, we show that by randomly dropping a few nodes of a one-hidden layer neural network, the training objective function, up to a certain approximation error, decreases by a multiplicative factor. On the flip side, we show that for training convex empirical risk minimizers (ERM), dropout in fact acts as a "stabilizer" or regularizer. That is, a simple dropout based GD method for convex ERMs is stable in the face of arbitrary changes to any one of the training points. Using the above assertion, we show that dropout provides fast rates for generalization error in learning (convex) generalized linear models (GLM). Moreover, using the above mentioned stability properties of dropout, we design dropout based differentially private algorithms for solving ERMs. The learned GLM thus, preserves privacy of each of the individual training points while providing accurate predictions for new test points. Finally, we empirically validate our stability assertions for dropout in the context of convex ERMs and show that surprisingly, dropout significantly outperforms (in terms of prediction accuracy) the L2 regularization based methods for several benchmark datasets.Comment: Currently under review for ICML 201

    Memory Bounded Deep Convolutional Networks

    Full text link
    In this work, we investigate the use of sparsity-inducing regularizers during training of Convolution Neural Networks (CNNs). These regularizers encourage that fewer connections in the convolution and fully connected layers take non-zero values and in effect result in sparse connectivity between hidden units in the deep network. This in turn reduces the memory and runtime cost involved in deploying the learned CNNs. We show that training with such regularization can still be performed using stochastic gradient descent implying that it can be used easily in existing codebases. Experimental evaluation of our approach on MNIST, CIFAR, and ImageNet datasets shows that our regularizers can result in dramatic reductions in memory requirements. For instance, when applied on AlexNet, our method can reduce the memory consumption by a factor of four with minimal loss in accuracy

    Scaleable input gradient regularization for adversarial robustness

    Full text link
    In this work we revisit gradient regularization for adversarial robustness with some new ingredients. First, we derive new per-image theoretical robustness bounds based on local gradient information. These bounds strongly motivate input gradient regularization. Second, we implement a scaleable version of input gradient regularization which avoids double backpropagation: adversarially robust ImageNet models are trained in 33 hours on four consumer grade GPUs. Finally, we show experimentally and through theoretical certification that input gradient regularization is competitive with adversarial training. Moreover we demonstrate that gradient regularization does not lead to gradient obfuscation or gradient masking
    • …
    corecore