21 research outputs found

    Stationary coexistence of hexagons and rolls via rigorous computations

    Get PDF
    In this work we introduce a rigorous computational method for finding heteroclinic solutions of a system of two second order differential equations. These solutions correspond to standing waves between rolls and hexagonal patterns of a two-dimensional pattern formation PDE model. After reformulating the problem as a projected boundary value problem (BVP) with boundaries in the stable/unstable manifolds, we compute the local manifolds using the parameterization method and solve the BVP using Chebyshev series and the radii polynomial approach. Our results settle a conjecture by Doelman et al. [European J. Appl. Math., 14 (2003), pp. 85–110] about the coexistence of hexagons and rolls

    Computation of maximal local (un)stable manifold patches by the parameterization method

    Full text link
    In this work we develop some automatic procedures for computing high order polynomial expansions of local (un)stable manifolds for equilibria of differential equations. Our method incorporates validated truncation error bounds, and maximizes the size of the image of the polynomial approximation relative to some specified constraints. More precisely we use that the manifold computations depend heavily on the scalings of the eigenvectors: indeed we study the precise effects of these scalings on the estimates which determine the validated error bounds. This relationship between the eigenvector scalings and the error estimates plays a central role in our automatic procedures. In order to illustrate the utility of these methods we present several applications, including visualization of invariant manifolds in the Lorenz and FitzHugh-Nagumo systems and an automatic continuation scheme for (un)stable manifolds in a suspension bridge problem. In the present work we treat explicitly the case where the eigenvalues satisfy a certain non-resonance condition.Comment: Revised version, typos corrected, references adde

    Existence and instability of steady states for a triangular cross-diffusion system: a computer-assisted proof

    Full text link
    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fxed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows us to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we get as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable
    corecore