4,253 research outputs found

    Stationarity and regularity concepts for set systems

    Get PDF
    Extremality, stationarity and regularity notions for a system of closed sets in a normed linear space are investigated. The equivalence of different abstract “extremal” settings in terms of set systems and multifunctions is proved. The dual necessary and sufficient conditions of weak stationarity (the Extended extremal principle) are presented for the case of an Asplund space

    Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated. Such programs can be used for modeling \\average" or steady-state behavior of complex stochastic systems. Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models. Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints. The convergence analysis of sample-path methods rely heavily on stability conditions. We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence. Alongside we provide a complementary sensitivity result for the corresponding deterministic problems. In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions.simulation;mathematical programs with equilibrium constraints;stability;regularity conditions;sample-path methods;stochastic mathematical programs with complementarity constraints

    Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints: Sample-Path Analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated.Such programs can be used for modeling average or steady-state behavior of complex stochastic systems.Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models.Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints.The convergence analysis of sample-path methods rely heavily on stability conditions.We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence.Alongside we provide a complementary sensitivity result for the corresponding deterministic problems.In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions.stochastic processes;mathematics;stability;simulation;regulations;general equilibrium

    Strong Stationarity Conditions for Optimal Control of Hybrid Systems

    Full text link
    We present necessary and sufficient optimality conditions for finite time optimal control problems for a class of hybrid systems described by linear complementarity models. Although these optimal control problems are difficult in general due to the presence of complementarity constraints, we provide a set of structural assumptions ensuring that the tangent cone of the constraints possesses geometric regularity properties. These imply that the classical Karush-Kuhn-Tucker conditions of nonlinear programming theory are both necessary and sufficient for local optimality, which is not the case for general mathematical programs with complementarity constraints. We also present sufficient conditions for global optimality. We proceed to show that the dynamics of every continuous piecewise affine system can be written as the optimizer of a mathematical program which results in a linear complementarity model satisfying our structural assumptions. Hence, our stationarity results apply to a large class of hybrid systems with piecewise affine dynamics. We present simulation results showing the substantial benefits possible from using a nonlinear programming approach to the optimal control problem with complementarity constraints instead of a more traditional mixed-integer formulation.Comment: 30 pages, 4 figure

    About [q]-regularity properties of collections of sets

    Get PDF
    We examine three primal space local Hoelder type regularity properties of finite collections of sets, namely, [q]-semiregularity, [q]-subregularity, and uniform [q]-regularity as well as their quantitative characterizations. Equivalent metric characterizations of the three mentioned regularity properties as well as a sufficient condition of [q]-subregularity in terms of Frechet normals are established. The relationships between [q]-regularity properties of collections of sets and the corresponding regularity properties of set-valued mappings are discussed.Comment: arXiv admin note: substantial text overlap with arXiv:1309.700

    An introduction to the qualitative and quantitative theory of homogenization

    Full text link
    We present an introduction to periodic and stochastic homogenization of ellip- tic partial differential equations. The first part is concerned with the qualitative theory, which we present for equations with periodic and random coefficients in a unified approach based on Tartar's method of oscillating test functions. In partic- ular, we present a self-contained and elementary argument for the construction of the sublinear corrector of stochastic homogenization. (The argument also applies to elliptic systems and in particular to linear elasticity). In the second part we briefly discuss the representation of the homogenization error by means of a two- scale expansion. In the last part we discuss some results of quantitative stochastic homogenization in a discrete setting. In particular, we discuss the quantification of ergodicity via concentration inequalities, and we illustrate that the latter in combi- nation with elliptic regularity theory leads to a quantification of the growth of the sublinear corrector and the homogenization error.Comment: Lecture notes of a minicourse given by the author during the GSIS International Winter School 2017 on "Stochastic Homogenization and its applications" at the Tohoku University, Sendai, Japan; This version contains a correction of Lemma 2.1
    corecore