18,742 research outputs found

    Moving forward with combinatorial interaction testing

    Get PDF
    Combinatorial interaction testing (CIT) is an efficient and effective method of detecting failures that are caused by the interactions of various system input parameters. In this paper, we discuss CIT, point out some of the difficulties of applying it in practice, and highlight some recent advances that have improved CIT’s applicability to modern systems. We also provide a roadmap for future research and directions; one that we hope will lead to new CIT research and to higher quality testing of industrial systems

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    The Progress, Challenges, and Perspectives of Directed Greybox Fuzzing

    Full text link
    Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.Comment: 16 pages, 4 figure

    Semantic Modeling of Analytic-based Relationships with Direct Qualification

    Full text link
    Successfully modeling state and analytics-based semantic relationships of documents enhances representation, importance, relevancy, provenience, and priority of the document. These attributes are the core elements that form the machine-based knowledge representation for documents. However, modeling document relationships that can change over time can be inelegant, limited, complex or overly burdensome for semantic technologies. In this paper, we present Direct Qualification (DQ), an approach for modeling any semantically referenced document, concept, or named graph with results from associated applied analytics. The proposed approach supplements the traditional subject-object relationships by providing a third leg to the relationship; the qualification of how and why the relationship exists. To illustrate, we show a prototype of an event-based system with a realistic use case for applying DQ to relevancy analytics of PageRank and Hyperlink-Induced Topic Search (HITS).Comment: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015
    corecore