6,696 research outputs found

    Challenges in video based object detection in maritime scenario using computer vision

    Get PDF
    This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here

    Full Reference Objective Quality Assessment for Reconstructed Background Images

    Full text link
    With an increased interest in applications that require a clean background image, such as video surveillance, object tracking, street view imaging and location-based services on web-based maps, multiple algorithms have been developed to reconstruct a background image from cluttered scenes. Traditionally, statistical measures and existing image quality techniques have been applied for evaluating the quality of the reconstructed background images. Though these quality assessment methods have been widely used in the past, their performance in evaluating the perceived quality of the reconstructed background image has not been verified. In this work, we discuss the shortcomings in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI) that combines color and structural information at multiple scales using a probability summation model to predict the perceived quality in the reconstructed background image given a reference image. To compare the performance of the proposed quality index with existing image quality assessment measures, we construct two different datasets consisting of reconstructed background images and corresponding subjective scores. The quality assessment measures are evaluated by correlating their objective scores with human subjective ratings. The correlation results show that the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets and the corresponding subjective scores provide a benchmark to evaluate the performance of future metrics that are developed to evaluate the perceived quality of reconstructed background images.Comment: Associated source code: https://github.com/ashrotre/RBQI, Associated Database: https://drive.google.com/drive/folders/1bg8YRPIBcxpKIF9BIPisULPBPcA5x-Bk?usp=sharing (Email for permissions at: ashrotreasuedu

    BSUV-Net: a fully-convolutional neural network for background subtraction of unseen videos

    Full text link
    Background subtraction is a basic task in computer vision and video processing often applied as a pre-processing step for object tracking, people recognition, etc. Recently, a number of successful background-subtraction algorithms have been proposed, however nearly all of the top-performing ones are supervised. Crucially, their success relies upon the availability of some annotated frames of the test video during training. Consequently, their performance on completely “unseen” videos is undocumented in the literature. In this work, we propose a new, supervised, background subtraction algorithm for unseen videos (BSUV-Net) based on a fully-convolutional neural network. The input to our network consists of the current frame and two background frames captured at different time scales along with their semantic segmentation maps. In order to reduce the chance of overfitting, we also introduce a new data-augmentation technique which mitigates the impact of illumination difference between the background frames and the current frame. On the CDNet-2014 dataset, BSUV-Net outperforms stateof-the-art algorithms evaluated on unseen videos in terms of several metrics including F-measure, recall and precision.Accepted manuscrip

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style
    • …
    corecore