296 research outputs found

    A computational method for simultaneous LQ optimal control design via piecewise constant output feedback

    Get PDF
    This paper is concerned with simultaneous linear-quadratic (LQ) optimal control design for a set of LTI systems via piecewise constant output feedback. First, the discrete-time simultaneous LQ optimal control design problem is reduced to solving a set of coupled matrix inequalities and an iterative LMI algorithm is presented to compute the feedback gain. Then, simultaneous stabilization and simultaneous LQ optimal control design of a set of LTI continuous-time systems are considered via periodic piecewise constant feedback gain. It is shown that the design of a periodic piecewise constant feedback gain simultaneously minimizing a set of given continuous-time performance indexes can be reduced to that of a constant feedback gain minimizing a set of equivalent discrete-time performance indexes. Explicit formulas for computing the equivalent discrete-time systems and performance indexes are derived. Examples are used to demonstrate the effectiveness of the proposed method.published_or_final_versio

    Structured, Gain-Scheduled Control of Wind Turbines

    Get PDF

    Optimal Output Modification and Robust Control Using Minimum Gain and the Large Gain Theorem

    Full text link
    When confronted with a control problem, the input-output properties of the system to be controlled play an important role in determining strategies that can or should be applied, as well as the achievable closed-loop performance. Optimal output modification is a process in which the system output is modified in such a manner that the modified system has a desired input-output property and the modified output is as similar as possible to a specified desired output. The first part of this dissertation develops linear matrix inequality (LMI)-based optimal output modification techniques to render a linear time-invariant (LTI) system minimum phase using parallel feedforward control or strictly positive real by linearly interpolating sensor measurements. H-ininifty-optimal parallel feedforward controller synthesis methods that rely on the input-output system property of minimum gain are derived and tested on a numerical example. The H2- and H-infinity-optimal sensor interpolation techniques are implemented in numerical simulations of noncolocated elastic mechanical systems. All mathematical models of physical systems are, to some degree, uncertain. Robust control can provide a guarantee of closed-loop stability and/or performance of a system subject to uncertainty, and is often performed using the well-known Small Gain Theorem. The second part of this dissertation introduces the lessor-known Large Gain Theorem and establishes its use for robust control. A proof of the Large Gain Theorem for LTI systems using the familiar Nyquist stability criterion is derived, with the goal of drawing parallels to the Small Gain Theorem and increasing the understanding and appreciation of this theorem within the control systems community. LMI-based robust controller synthesis methods using the Large Gain Theorem are presented and tested numerically on a robust control benchmark problem with a comparison to H-infinity robust control. The numerical results demonstrate the practicality of performing robust control with the Large Gain Theorem, including its ability to guarantee an uncertain closed-loop system is minimum phase, which is a robust performance problem that previous robust control techniques could not solve.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143934/1/caverly_1.pd

    Optimal control with structure constraints and its application to the design of passive mechanical systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Page 214 blank.Includes bibliographical references.Structured control (static output feedback, reduced-order control, and decentralized feedback) is one of the most important open problems in control theory and practice. In this thesis, various techniques for synthesis of structured controllers are surveyed and investigated, including H2 optimization, H[infinity] optimization, L1 control, eigenvalue and eigenstructure treatment, and multiobjective control. Unstructured control-full- state feedback and full-order control-is also discussed. Riccati-based synthesis, linear matrix inequalities (LMI), homotopy methods, gradient- and subgradientbased optimization are used. Some new algorithms and extensions are proposed, such as a subgradient-based method to maximize the minimal damping with structured feedback, a multiplier method for structured optimal H2 control with pole regional placement, and the LMI-based H2/H[infinity]/pole suboptimal synthesis with static output feedback. Recent advances in related areas are comprehensively surveyed and future research directions are suggested. In this thesis we cast the parameter optimization of passive mechanical systems as a decentralized control problem in state space, so that we can apply various decentralized control techniques to the parameter design which might be very hard traditionally. More practical constraints for mechanical system design are considered; for example, the parameters are restricted to be nonnegative, symmetric, or within some physically-achievable ranges. Marginally statable systems and hysterically damped systems are also discussed. Numerical examples and experimental results are given to illustrate the successful application of decentralized control techniques to the design of passive mechanical systems, such as multi-degree-of-freedom tuned-mass dampers, passive vehicle suspensions, and others.by Lei Zuo.S.M

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    Fixed-structure Control of LTI Systems with Polytopic-type Uncertainty:Application to Inverter-interfaced Microgrids

    Get PDF
    This thesis focuses on the development of robust control solutions for linear time-invariant interconnected systems affected by polytopic-type uncertainty. The main issues involved in the control of such systems, e.g. sensor and actuator placement, control configuration selection, and robust fixed-structure control design are included. The problem of fixed-structure control is intrinsically nonconvex and hence computationally intractable. Nevertheless, the problem has attracted considerable attention due to the great importance of fixed-structure controllers in practice. In this thesis, necessary and sufficient conditions for fixed-structure H_inf control of polytopic systems with a single uncertain parameter in terms of a finite number of bilinear matrix inequalities (BMIs) are developed. Increasing the number of uncertain parameters leads to sufficient BMI conditions, where the number of decision variables grows polynomially. Convex approximations of robust fixed-order and fixed-structure controller design which rely on the concept of strictly positive realness (SPRness) of transfer functions in state space setting are presented. Such approximations are based on the use of slack matrices whose duty is to decouple the product of unknown matrices. Several algorithms for determination and update of the slack matrices are given. It is shown that the problem of sensor and actuator placement in the polytopic interconnected systems can be formulated as an optimization problem by minimizing cardinality of some pattern matrices, while satisfying a guaranteed level of H_inf performance. The control configuration design is achieved by solving a convex optimization problem whose solution delivers a trade-off curve that starts with a centralized controller and ends with a decentralized or a distributed controller. The proposed approaches are applied to inverter-interfaced microgrids which consist of distributed generation (DG) units. To this end, two important control problems associated with the microgrids are considered: (i) Current control of grid-connected voltage-source converters with L/LCL filters and (ii) Voltage control of islanded microgrids. The proposed control strategies are able to independently regulate the direct and quadrature (dq) components of the converter currents and voltages at the point of common couplings (PCC) in a fully decoupled manner and provide satisfactory dynamic responses. The important problem of plug-and-play (PnP) capability of DGs in the microgrids is also studied. It is shown that an inverter-interfaced microgrid consisting of multi DGs under PnP functionality can be cast as a system with polytopic-type uncertainty. By virtue of this novel description and use of the results from theory of robust control, the stability of the microgrid system under PnP operation of DGs is preserved. Extensive case studies, based on time-domain simulations in MATLAB/SimPowerSystems Toolbox, are carried out to evaluate the performance of the proposed controllers under various test scenarios, e.g., load change, voltage and current tracking. Real-time hardware-in-the-loop case studies, using RT-LAB real-time platform of OPAL-RT Technologies, are also conducted to validate the performance of the designed controllers and demonstrate their insensitivity to hardware implementation issues, e.g., noise and PWM non-idealities. The simulation and experimental results demonstrate satisfactory performance of the designed controllers

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions

    Contributions to Passivity Theory and Dissipative Control Synthesis

    Get PDF
    This thesis contains contributions to some relevant problems in the field of control theory and controller design technology, namely to the areas of passivity analysis and dissipative control synthesis for linear and nonlinear dynamical systems. The first of our contributions consists in presenting a solution to a problem which had been unsolved for many years: the problem of the equivalence between the notions of strict positive realness and strict passivity of linear systems. Both properties imply the asymptotic stability of a linear system, although the former is a frequency-domain concept and the latter is a time-domain concept. Subsequently, we approach the equally classical topic of static output feedback stabilization of linear systems, a problem to which a definite solution remains to be given. We present a new necessary and sufficient LMI condition for stabilization based on the notion of strict dissipativity, and we propose a new noniterative strategy for controller design which consists in solving a single convex optimization problem. In addition, we also introduce a new dissipativity-based strategy for feedback stabilization of nonlinear systems using the notion of linear annihilators and the celebrated Finsler’s Lemma. This approach allows for analysing the dissipativity properties of rational nonlinear plants in terms of a polytopic LMI condition. A new stabilizability condition that would not be feasible in the case of a passive representation of the system is presented as well, making it possible to derive a closed-form expresion for the controller’s feedthrough term as a direct consequence of the local dissipativity analysis of the plant. This feature simplifies the remaing steps of the controller design procedure considerably, both in the case of a static or a dynamic output feedback

    Stability analysis and robust control of power networks in stochastic environment

    Get PDF
    The modern power grid is moving towards a cleaner form of energy, renewable energy to meet the ever-increasing demand and new technologies are being installed in the power network to monitor and maintain a stable operation. Further, the interactions in the network are not anymore localized but take place over a system, and the control centers are located remotely, thus involving control of network components over communication channels. Further, given the rapid integration of wind energy, it is essential to study the impact of wind variability on the system stability and frequency regulation. Hence, we model the unreliable and intermittent nature of wind energy with stochastic uncertainty. Moreover, the phasor measurement unit (PMU) data from the power network is transmitted to the control center over communication channels, and it is susceptible to inherent communication channel uncertainties, cyber attacks, and hence, the data at the receiving end cannot be accurate. In this work, we model these communication channels with stochastic uncertainties to study the impact of stochastic uncertainty on the stability and wide area control of power network. The challenging aspect of the stability analysis of stochastic power network is that the stochastic uncertainty appears multiplicative as well as additive in the system dynamics. The notion of mean square exponential stability is considered to study the properties of stochastic power network expressed as a networked control system (NCS) with stochastic uncertainty. We develop, necessary and sufficient conditions for mean square exponential stability which are shown in terms of the input-output property of deterministic or nominal system dynamics captured by the mean square system norm and variance of the channel uncertainty. For a particular case of single input channel uncertainty, we also prove a fundamental limitation result that arises in the mean square exponential stabilization of the continuous-time linear system. Overall, the theoretical contributions in this work generalize the existing results on stability analysis from discrete-time linear systems to continuous-time linear systems with multiplicative uncertainty. The stability results can also be interpreted as a small gain theorem for continuous-time stochastic systems. Linear Matrix Inequalities (LMI)-based optimization formulation is provided for the computation of mean square system norm for stability analysis and controller synthesis. An IEEE 68 bus system is considered, and the fragility of the decentralized load-side primary frequency controller with uncertain wind is shown. The critical variance value is shown to decrease with the increase in the cost of the controllable loads and with the rise in penetration of wind farms. Next, we model the power network with detailed higher order differential equations for synchronous generator (SG), wind turbine generator (WTG). The network power flow equations are expressed as algebraic equations. The resultant system is described by a detailed higher order nonlinear differential-algebraic model. It is shown that the uncertainty in the wind speed appears multiplicative in the system dynamics. Stochastic stability of such systems is characterized based on the developed results on mean square exponential stability. In particular, we study the stochastic small signal stability of the resultant system and characterize the critical variance in wind speeds, beyond which the grid dynamics becomes mean square unstable. The power fluctuations in the demand side and intermittent generation (from renewables) cause frequency excursions from the nominal value. In this context, we consider the controllable loads which can vary their power to achieve frequency regulation based on the frequency feedback from the network. Two different load-side frequency controller strategies, decentralized and distributed frequency controllers are studied in the presence of stochastic wind. Finally, the time-domain simulations on an IEEE 39 bus system (by replacing some of the traditional SGs with WTG) are shown using the wind speeds modeled as stochastic as well as actual wind speeds obtained from the wind farm located near Ames, Iowa. It can be seen that, with an increase in the penetration of wind generation in the network, the network turns mean square unstable. Furthermore, we capture the mean square unstable behavior of the power network with increased penetration of renewables using the statistics of actual wind analytically and complement them through linear and nonlinear time domain simulations. Finally, we analyze the vulnerability of communication channel to stochastic uncertainty on an IEEE 39 bus system and design a wide area controller that is robust to various sources of uncertainties that arise in the communication channels. Further, the PMU measurements and wide area control inputs are rank ordered based on their criticality
    corecore