3 research outputs found

    Contention energy-aware real-time task mapping on NoC based heterogeneous MPSoCs

    Get PDF
    © 2018 IEEE. Network-on-Chip (NoC)-based multiprocessor system-on-chips (MPSoCs) are becoming the de-facto computing platform for computationally intensive real-time applications in the embedded systems due to their high performance, exceptional quality-of-service (QoS) and energy efficiency over superscalar uniprocessor architectures. Energy saving is important in the embedded system because it reduces the operating cost while prolongs lifetime and improves the reliability of the system. In this paper, contention-aware energy efficient static mapping using NoC-based heterogeneous MPSoC for real-time tasks with an individual deadline and precedence constraints is investigated. Unlike other schemes task ordering, mapping, and voltage assignment are performed in an integrated manner to minimize the processing energy while explicitly reduce contention between the communications and communication energy. Furthermore, both dynamic voltage and frequency scaling and dynamic power management are used for energy consumption optimization. The developed contention-aware integrated task mapping and voltage assignment (CITM-VA) static energy management scheme performs tasks ordering using earliest latest finish time first (ELFTF) strategy that assigns priorities to the tasks having shorter latest finish time (LFT) over the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage level that reduces processing energy consumption. Similarly, the communication energy is minimized by assigning discrete voltage levels to the NoC links. Further, total energy efficiency is achieved by putting the processor into a low-power state when feasible. Moreover, this approach resolves the contention between communications that traverse the same link by allocating links to communications with higher priority. The results obtained through extensive simulations of real-world benchmarks demonstrate that CITM-VA approach outperforms state-of-the-art technique and achieves an average 30% total energy improvement. Additionally, it maintains high QoS and robustness for real-time applications

    Static Mapping of Mixed-Critical Applications for Fault-Tolerant MPSoCs

    No full text

    Improving Model-Based Software Synthesis: A Focus on Mathematical Structures

    Get PDF
    Computer hardware keeps increasing in complexity. Software design needs to keep up with this. The right models and abstractions empower developers to leverage the novelties of modern hardware. This thesis deals primarily with Models of Computation, as a basis for software design, in a family of methods called software synthesis. We focus on Kahn Process Networks and dataflow applications as abstractions, both for programming and for deriving an efficient execution on heterogeneous multicores. The latter we accomplish by exploring the design space of possible mappings of computation and data to hardware resources. Mapping algorithms are not at the center of this thesis, however. Instead, we examine the mathematical structure of the mapping space, leveraging its inherent symmetries or geometric properties to improve mapping methods in general. This thesis thoroughly explores the process of model-based design, aiming to go beyond the more established software synthesis on dataflow applications. We starting with the problem of assessing these methods through benchmarking, and go on to formally examine the general goals of benchmarks. In this context, we also consider the role modern machine learning methods play in benchmarking. We explore different established semantics, stretching the limits of Kahn Process Networks. We also discuss novel models, like Reactors, which are designed to be a deterministic, adaptive model with time as a first-class citizen. By investigating abstractions and transformations in the Ohua language for implicit dataflow programming, we also focus on programmability. The focus of the thesis is in the models and methods, but we evaluate them in diverse use-cases, generally centered around Cyber-Physical Systems. These include the 5G telecommunication standard, automotive and signal processing domains. We even go beyond embedded systems and discuss use-cases in GPU programming and microservice-based architectures
    corecore