4 research outputs found

    Ubiquitous Memory Introspection (Preliminary Manuscript)

    Get PDF
    Modern memory systems play a critical role in the performance ofapplications, but a detailed understanding of the application behaviorin the memory system is not trivial to attain. It requires timeconsuming simulations of the memory hierarchy using long traces, andoften using detailed modeling. It is increasingly possible to accesshardware performance counters to measure events in the memory system,but the measurements remain coarse grained, better suited forperformance summaries than providing instruction level feedback. Theavailability of a low cost, online, and accurate methodology forderiving fine-grained memory behavior profiles can prove extremelyuseful for runtime analysis and optimization of programs.This paper presents a new methodology for Ubiquitous MemoryIntrospection (UMI). It is an online and lightweight mini-simulationmethodology that focuses on simulating short memory access tracesrecorded from frequently executed code regions. The simulations arefast and can provide profiling results at varying granularities, downto that of a single instruction or address. UMI naturally complementsruntime optimizations techniques and enables new opportunities formemory specific optimizations.In this paper, we present a prototype implementation of a runtimesystem implementing UMI. The prototype is readily deployed oncommodity processors, requires no user intervention, and can operatewith stripped binaries and legacy software. The prototype operateswith an average runtime overhead of 20% but this slowdown is only 6%slower than a state of the art binary instrumentation tool. We used32 benchmarks, including the full suite of SPEC2000 benchmarks, forour evaluation. We show that the mini-simulation results accuratelyreflect the cache performance of two existing memory systems, anIntel Pentium~4 and an AMD Athlon MP (K7) processor. We alsodemonstrate that low level profiling information from the onlinesimulation can serve to identify high-miss rate load instructions with a77% rate of accuracy compared to full offline simulations thatrequired days to complete. The online profiling results are used atruntime to implement a simple software prefetching strategy thatachieves a speedup greater than 60% in the best case

    Static identification of delinquent loads

    No full text
    The effective use of processor caches is crucial to the performance of applications. It has been shown that cache misses are not evenly distributed throughout a program. In applications running on RISC-style processors, a small number of delinquent load instructions are responsible for most of the cache misses. Identification of delinquent loads is the key to the success of many cache optimization and prefetching techniques. In this paper, we propose a method for identifying delinquent loads that can be implemented at compile time. Our experiments over eighteen benchmarks from the SPEC suite shows that our proposed scheme is stable across benchmarks, inputs, and cache structures, identifying an average of 10 % of the total number of loads in the benchmarks we tested that account for over 90 % of all data cache misses. As far as we know, this is the first time a technique for static delinquent load identification with such a level of precision and coverage has been reported. While comparable techniques can also identify load instructions that cover 90 % of all data cache misses, they do so by selecting over 50 % of all load instructions in the code, resulting in a high number of false positives. If basic block profiling is used in conjunction with our heuristic, then our results show that it is possible to pin down just 1.3 % of the load instructions that account for 82 % of all data cache misses. 1

    Static identification of delinquent loads

    No full text
    10.1109/CGO.2004.1281683International Symposium on Code Generation and Optimization, CGO303-31
    corecore