155,154 research outputs found

    State-of-the-art Speech Recognition With Sequence-to-Sequence Models

    Full text link
    Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In previous work, we have shown that such architectures are comparable to state-of-theart ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We also introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12, 500 hour voice search task, we find that the proposed changes improve the WER from 9.2% to 5.6%, while the best conventional system achieves 6.7%; on a dictation task our model achieves a WER of 4.1% compared to 5% for the conventional system.Comment: ICASSP camera-ready versio

    End-to-End Attention-based Large Vocabulary Speech Recognition

    Full text link
    Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modelling, language modelling and sequence decoding. We investigate a more direct approach in which the HMM is replaced with a Recurrent Neural Network (RNN) that performs sequence prediction directly at the character level. Alignment between the input features and the desired character sequence is learned automatically by an attention mechanism built into the RNN. For each predicted character, the attention mechanism scans the input sequence and chooses relevant frames. We propose two methods to speed up this operation: limiting the scan to a subset of most promising frames and pooling over time the information contained in neighboring frames, thereby reducing source sequence length. Integrating an n-gram language model into the decoding process yields recognition accuracies similar to other HMM-free RNN-based approaches

    EM-Network: Oracle Guided Self-distillation for Sequence Learning

    Full text link
    We introduce EM-Network, a novel self-distillation approach that effectively leverages target information for supervised sequence-to-sequence (seq2seq) learning. In contrast to conventional methods, it is trained with oracle guidance, which is derived from the target sequence. Since the oracle guidance compactly represents the target-side context that can assist the sequence model in solving the task, the EM-Network achieves a better prediction compared to using only the source input. To allow the sequence model to inherit the promising capability of the EM-Network, we propose a new self-distillation strategy, where the original sequence model can benefit from the knowledge of the EM-Network in a one-stage manner. We conduct comprehensive experiments on two types of seq2seq models: connectionist temporal classification (CTC) for speech recognition and attention-based encoder-decoder (AED) for machine translation. Experimental results demonstrate that the EM-Network significantly advances the current state-of-the-art approaches, improving over the best prior work on speech recognition and establishing state-of-the-art performance on WMT'14 and IWSLT'14.Comment: ICML 202

    Improving sequence-to-sequence speech recognition training with on-the-fly data augmentation

    Full text link
    Sequence-to-Sequence (S2S) models recently started to show state-of-the-art performance for automatic speech recognition (ASR). With these large and deep models overfitting remains the largest problem, outweighing performance improvements that can be obtained from better architectures. One solution to the overfitting problem is increasing the amount of available training data and the variety exhibited by the training data with the help of data augmentation. In this paper we examine the influence of three data augmentation methods on the performance of two S2S model architectures. One of the data augmentation method comes from literature, while two other methods are our own development - a time perturbation in the frequency domain and sub-sequence sampling. Our experiments on Switchboard and Fisher data show state-of-the-art performance for S2S models that are trained solely on the speech training data and do not use additional text data.Comment: To appear in ICASSP 202
    • …
    corecore