2 research outputs found

    State-Dependent Multiple Access Channels with Feedback

    Full text link
    In this paper, we examine discrete memoryless Multiple Access Channels (MACs) with two-sided feedback in the presence of two correlated channel states that are correlated in the sense of Slepian-Wolf (SW). We find achievable rate region for this channel when the states are provided non-causally to the transmitters and show that our achievable rate region subsumes Cover-Leung achievable rate for the discrete memoryless MAC with two-sided feedback as its special case. We also find the capacity region of discrete memoryless MAC with two-sided feedback and with SW-type correlated states available causally or strictly causally to the transmitters. We also study discrete memoryless MAC with partial feedback in the presence of two SW-type correlated channel states that are provided non-causally, causally, or strictly causally to the transmitters. An achievable rate region is found when channel states are non-causally provided to the transmitters whereas capacity regions are characterized when channel states are causally, or strictly causally available at the transmitters.Comment: 10 pages, 4 figure

    State-Dependent Z Channel

    Full text link
    In this paper we study the Z channel with side information non-causally available at the encoders. We use Marton encoding along with Gelfand-Pinsker random binning scheme and Chong-Motani-Garg-El Gamal (CMGE) jointly decoding to find an achievable rate region. We will see that our achievable rate region gives the achievable rate of the multiple access channel with side information and also degraded broadcast channel with side information. We will also derive an inner bound and an outer bound on the capacity region of the state-dependent degraded discrete memoryless Z channel and also will observe that our outer bound meets the inner bound for the rates corresponding to the second transmitter. Also, by assuming the high signal to noise ratio and strong interference regime, and using the lattice strategies, we derive an achievable rate region for the Gaussian degraded Z channel with additive interference non-causally available at both of the encoders. Our method is based on lattice transmission scheme, jointly decoding at the first decoder and successive decoding at the second decoder. Using such coding scheme we remove the effect of the interference completely
    corecore