25,677 research outputs found

    A Method for Estimating the Probability of Extremely Rare Accidents in Complex Systems

    Full text link
    Estimating the probability of failures or accidents with aerospace systems is often necessary when new concepts or designs are introduced, as it is being done for Autonomous Aircraft. If the design is safe, as it is supposed to be, accident cases are hard to find. Such analysis needs some variance reduction technique and several algorithms exist for that, however specific model features may cause difficulties in practice, such as the case of system models where independent agents have to autonomously accomplish missions within finite time, and likely with the presence of human agents. For handling these scenarios, this paper presents a novel estimation approach, based on the combination of the well-established variation reduction technique of Interacting Particles System (IPS) with the long-standing optimization algorithm denominated DIviding RECTangles (DIRECT). When combined, these two techniques yield statistically significant results for extremely low probabilities. In addition, this novel approach allows the identification of intermediate events and simplifies the evaluation of sensitivity of the estimated probabilities to certain system parameters

    The Partially Observable Hidden Markov Model and its Application to Keystroke Dynamics

    Full text link
    The partially observable hidden Markov model is an extension of the hidden Markov Model in which the hidden state is conditioned on an independent Markov chain. This structure is motivated by the presence of discrete metadata, such as an event type, that may partially reveal the hidden state but itself emanates from a separate process. Such a scenario is encountered in keystroke dynamics whereby a user's typing behavior is dependent on the text that is typed. Under the assumption that the user can be in either an active or passive state of typing, the keyboard key names are event types that partially reveal the hidden state due to the presence of relatively longer time intervals between words and sentences than between letters of a word. Using five public datasets, the proposed model is shown to consistently outperform other anomaly detectors, including the standard HMM, in biometric identification and verification tasks and is generally preferred over the HMM in a Monte Carlo goodness of fit test

    Reliable uncertainties in indirect measurements

    Full text link
    In this article we present very intuitive, easy to follow, yet mathematically rigorous, approach to the so called data fitting process. Rather than minimizing the distance between measured and simulated data points, we prefer to find such an area in searched parameters' space that generates simulated curve crossing as many acquired experimental points as possible, but at least half of them. Such a task is pretty easy to attack with interval calculations. The problem is, however, that interval calculations operate on guaranteed intervals, that is on pairs of numbers determining minimal and maximal values of measured quantity while in vast majority of cases our measured quantities are expressed rather as a pair of two other numbers: the average value and its standard deviation. Here we propose the combination of interval calculus with basic notions from probability and statistics. This approach makes possible to obtain the results in familiar form as reliable values of searched parameters, their standard deviations, and their correlations as well. There are no assumptions concerning the probability density distributions of experimental values besides the obvious one that their variances are finite. Neither the symmetry of uncertainties of experimental distributions is required (assumed) nor those uncertainties have to be `small.' As a side effect, outliers are quietly and safely ignored, even if numerous.Comment: 9 pages, 4 figures, PACS numbers: 07.05.Kf; 02.60.Ed; 02.70.R

    Counterfactual Reasoning and Learning Systems

    Full text link
    This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select changes that improve both the short-term and long-term performance of such systems. This work is illustrated by experiments carried out on the ad placement system associated with the Bing search engine.Comment: revised versio

    Local optimization-based statistical inference

    Full text link
    This paper introduces a local optimization-based approach to test statistical hypotheses and to construct confidence intervals. This approach can be viewed as an extension of bootstrap, and yields asymptotically valid tests and confidence intervals as long as there exist consistent estimators of unknown parameters. We present simple algorithms including a neighborhood bootstrap method to implement the approach. Several examples in which theoretical analysis is not easy are presented to show the effectiveness of the proposed approach

    Active Ranking from Pairwise Comparisons and when Parametric Assumptions Don't Help

    Full text link
    We consider sequential or active ranking of a set of n items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of pre-specified sizes according to their scores. This notion of ranking includes as special cases the identification of the top-k items and the total ordering of the items. We first analyze a sequential ranking algorithm that counts the number of comparisons won, and uses these counts to decide whether to stop, or to compare another pair of items, chosen based on confidence intervals specified by the data collected up to that point. We prove that this algorithm succeeds in recovering the ranking using a number of comparisons that is optimal up to logarithmic factors. This guarantee does not require any structural properties of the underlying pairwise probability matrix, unlike a significant body of past work on pairwise ranking based on parametric models such as the Thurstone or Bradley-Terry-Luce models. It has been a long-standing open question as to whether or not imposing these parametric assumptions allows for improved ranking algorithms. For stochastic comparison models, in which the pairwise probabilities are bounded away from zero, our second contribution is to resolve this issue by proving a lower bound for parametric models. This shows, perhaps surprisingly, that these popular parametric modeling choices offer at most logarithmic gains for stochastic comparisons.Comment: improved log factor in main result; added discussion on comparison probabilities close to zero; added numerical result

    Algorithms for Linear Bandits on Polyhedral Sets

    Full text link
    We study stochastic linear optimization problem with bandit feedback. The set of arms take values in an NN-dimensional space and belong to a bounded polyhedron described by finitely many linear inequalities. We provide a lower bound for the expected regret that scales as Ω(NlogT)\Omega(N\log T). We then provide a nearly optimal algorithm and show that its expected regret scales as O(Nlog1+ϵ(T))O(N\log^{1+\epsilon}(T)) for an arbitrary small ϵ>0\epsilon >0. The algorithm alternates between exploration and exploitation intervals sequentially where deterministic set of arms are played in the exploration intervals and greedily selected arm is played in the exploitation intervals. We also develop an algorithm that achieves the optimal regret when sub-Gaussianity parameter of the noise term is known. Our key insight is that for a polyhedron the optimal arm is robust to small perturbations in the reward function. Consequently, a greedily selected arm is guaranteed to be optimal when the estimation error falls below some suitable threshold. Our solution resolves a question posed by Rusmevichientong and Tsitsiklis (2011) that left open the possibility of efficient algorithms with asymptotic logarithmic regret bounds. We also show that the regret upper bounds hold with probability 11. Our numerical investigations show that while theoretical results are asymptotic the performance of our algorithms compares favorably to state-of-the-art algorithms in finite time as well

    Locally Private Mean Estimation: Z-test and Tight Confidence Intervals

    Full text link
    This work provides tight upper- and lower-bounds for the problem of mean estimation under ϵ\epsilon-differential privacy in the local model, when the input is composed of nn i.i.d. drawn samples from a normal distribution with variance σ\sigma. Our algorithms result in a (1β)(1-\beta)-confidence interval for the underlying distribution's mean μ\mu of length O~(σlog(1β)ϵn)\tilde O\left( \frac{\sigma \sqrt{\log(\frac 1 \beta)}}{\epsilon\sqrt n} \right). In addition, our algorithms leverage binary search using local differential privacy for quantile estimation, a result which may be of separate interest. Moreover, we prove a matching lower-bound (up to poly-log factors), showing that any one-shot (each individual is presented with a single query) local differentially private algorithm must return an interval of length Ω(σlog(1/β)ϵn)\Omega\left( \frac{\sigma\sqrt{\log(1/\beta)}}{\epsilon\sqrt{n}}\right)

    Rarely-switching linear bandits: optimization of causal effects for the real world

    Full text link
    Excessively changing policies in many real world scenarios is difficult, unethical, or expensive. After all, doctor guidelines, tax codes, and price lists can only be reprinted so often. We may thus want to only change a policy when it is probable that the change is beneficial. In cases that a policy is a threshold on contextual variables we can estimate treatment effects for populations lying at the threshold. This allows for a schedule of incremental policy updates that let us optimize a policy while making few detrimental changes. Using this idea, and the theory of linear contextual bandits, we present a conservative policy updating procedure which updates a deterministic policy only when justified. We extend the theory of linear bandits to this rarely-switching case, proving that such procedures share the same regret, up to constant scaling, as the common LinUCB algorithm. However the algorithm makes far fewer changes to its policy and, of those changes, fewer are detrimental. We provide simulations and an analysis of an infant health well-being causal inference dataset, showing the algorithm efficiently learns a good policy with few changes. Our approach allows efficiently solving problems where changes are to be avoided, with potential applications in medicine, economics and beyond.Comment: 17 pages, 9 figure

    Adaptive, Distribution-Free Prediction Intervals for Deep Networks

    Full text link
    The machine learning literature contains several constructions for prediction intervals that are intuitively reasonable but ultimately ad-hoc in that they do not come with provable performance guarantees. We present methods from the statistics literature that can be used efficiently with neural networks under minimal assumptions with guaranteed performance. We propose a neural network that outputs three values instead of a single point estimate and optimizes a loss function motivated by the standard quantile regression loss. We provide two prediction interval methods with finite sample coverage guarantees solely under the assumption that the observations are independent and identically distributed. The first method leverages the conformal inference framework and provides average coverage. The second method provides a new, stronger guarantee by conditioning on the observed data. Lastly, our loss function does not compromise the predictive accuracy of the network like other prediction interval methods. We demonstrate the ease of use of our procedures as well as its improvements over other methods on both simulated and real data. As most deep networks can easily be modified by our method to output predictions with valid prediction intervals, its use should become standard practice, much like reporting standard errors along with mean estimates
    corecore