114,641 research outputs found

    Residual Attention Network for Image Classification

    Full text link
    In this work, we propose "Residual Attention Network", a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.Comment: accepted to CVPR201

    Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    Get PDF
    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control

    VoxCeleb2: Deep Speaker Recognition

    Full text link
    The objective of this paper is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.Comment: To appear in Interspeech 2018. The audio-visual dataset can be downloaded from http://www.robots.ox.ac.uk/~vgg/data/voxceleb2 . 1806.05622v2: minor fixes; 5 page

    Advanced LSTM: A Study about Better Time Dependency Modeling in Emotion Recognition

    Full text link
    Long short-term memory (LSTM) is normally used in recurrent neural network (RNN) as basic recurrent unit. However,conventional LSTM assumes that the state at current time step depends on previous time step. This assumption constraints the time dependency modeling capability. In this study, we propose a new variation of LSTM, advanced LSTM (A-LSTM), for better temporal context modeling. We employ A-LSTM in weighted pooling RNN for emotion recognition. The A-LSTM outperforms the conventional LSTM by 5.5% relatively. The A-LSTM based weighted pooling RNN can also complement the state-of-the-art emotion classification framework. This shows the advantage of A-LSTM

    Learning Bodily and Temporal Attention in Protective Movement Behavior Detection

    Get PDF
    For people with chronic pain, the assessment of protective behavior during physical functioning is essential to understand their subjective pain-related experiences (e.g., fear and anxiety toward pain and injury) and how they deal with such experiences (avoidance or reliance on specific body joints), with the ultimate goal of guiding intervention. Advances in deep learning (DL) can enable the development of such intervention. Using the EmoPain MoCap dataset, we investigate how attention-based DL architectures can be used to improve the detection of protective behavior by capturing the most informative temporal and body configurational cues characterizing specific movements and the strategies used to perform them. We propose an end-to-end deep learning architecture named BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts that are more informative to the detection of protective behavior. The approach addresses the variety of ways people execute a movement (including healthy people) independently of the type of movement analyzed. Through extensive comparison experiments with other state-of-the-art machine learning techniques used with motion capture data, we show statistically significant improvements achieved by using these attention mechanisms. In addition, the BANet architecture requires a much lower number of parameters than the state of the art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201
    corecore