70,398 research outputs found

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism

    ATLsc with partial observation

    Full text link
    Alternating-time temporal logic with strategy contexts (ATLsc) is a powerful formalism for expressing properties of multi-agent systems: it extends CTL with strategy quantifiers, offering a convenient way of expressing both collaboration and antagonism between several agents. Incomplete observation of the state space is a desirable feature in such a framework, but it quickly leads to undecidable verification problems. In this paper, we prove that uniform incomplete observation (where all players have the same observation) preserves decidability of the model-checking problem, even for very expressive logics such as ATLsc.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Model checking learning agent systems using Promela with embedded C code and abstraction

    Get PDF
    As autonomous systems become more prevalent, methods for their verification will become more widely used. Model checking is a formal verification technique that can help ensure the safety of autonomous systems, but in most cases it cannot be applied by novices, or in its straight \off-the-shelf" form. In order to be more widely applicable it is crucial that more sophisticated techniques are used, and are presented in a way that is reproducible by engineers and verifiers alike. In this paper we demonstrate in detail two techniques that are used to increase the power of model checking using the model checker SPIN. The first of these is the use of embedded C code within Promela specifications, in order to accurately re ect robot movement. The second is to use abstraction together with a simulation relation to allow us to verify multiple environments simultaneously. We apply these techniques to a fairly simple system in which a robot moves about a fixed circular environment and learns to avoid obstacles. The learning algorithm is inspired by the way that insects learn to avoid obstacles in response to pain signals received from their antennae. Crucially, we prove that our abstraction is sound for our example system { a step that is often omitted but is vital if formal verification is to be widely accepted as a useful and meaningful approach

    Bounded Situation Calculus Action Theories

    Full text link
    In this paper, we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the mu-calculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.Comment: 51 page

    Strategic programming on graph rewriting systems

    Full text link
    We describe a strategy language to control the application of graph rewriting rules, and show how this language can be used to write high-level declarative programs in several application areas. This language is part of a graph-based programming tool built within the port-graph transformation and visualisation environment PORGY.Comment: In Proceedings IWS 2010, arXiv:1012.533
    • …
    corecore