4 research outputs found

    A cruel angel\u27s thesis: a quantitative study of online privacy values dependent on social factors

    Get PDF
    Online privacy is an idea that is difficult to quantify, and simply asking people how they feel about their privacy often yields answers that are vague at best and do not give an overall look into how people view their own privacy or security online, much less a way to quantify it. The purpose of this study was to find a way to quantify how different societal factors may have an effect on computer and internet privacy. Five social factors were compared against seven privacy factors in order to determine if there was any correlation between them. To meet this requirement, a survey was created and sent out to individuals who were also asked to share the survey. The survey stayed open for approximately six months before it was closed and the results were aggregated, and then graphs were created in order to examine the results of the survey. There were a total of 464 active participants, and their responses were aggregated into graphs. After examination of the graphs, it would appear that while there is not a correlation between every social factor and privacy aspect, there are some aspects that have a definite correlation. In addition, there were some social factors that had larger tendencies to produce strong correlations than others. Likewise, there were some privacy factors that tended to produce stronger correlations than others. Overall, future research considerations could include finding the mean and median of how people view privacy, looking into specific social media items, and finally, determining whether any of the correlations that were found have causations behind them

    Security Analysis and Improvement Model for Web-based Applications

    Get PDF
    Today the web has become a major conduit for information. As the World Wide Web?s popularity continues to increase, information security on the web has become an increasing concern. Web information security is related to availability, confidentiality, and data integrity. According to the reports from http://www.securityfocus.com in May 2006, operating systems account for 9% vulnerability, web-based software systems account for 61% vulnerability, and other applications account for 30% vulnerability. In this dissertation, I present a security analysis model using the Markov Process Model. Risk analysis is conducted using fuzzy logic method and information entropy theory. In a web-based application system, security risk is most related to the current states in software systems and hardware systems, and independent of web application system states in the past. Therefore, the web-based applications can be approximately modeled by the Markov Process Model. The web-based applications can be conceptually expressed in the discrete states of (web_client_good; web_server_good, web_server_vulnerable, web_server_attacked, web_server_security_failed; database_server_good, database_server_vulnerable, database_server_attacked, database_server_security_failed) as state space in the Markov Chain. The vulnerable behavior and system response in the web-based applications are analyzed in this dissertation. The analyses focus on functional availability-related aspects: the probability of reaching a particular security failed state and the mean time to the security failure of a system. Vulnerability risk index is classified in three levels as an indicator of the level of security (low level, high level, and failed level). An illustrative application example is provided. As the second objective of this dissertation, I propose a security improvement model for the web-based applications using the GeoIP services in the formal methods. In the security improvement model, web access is authenticated in role-based access control using user logins, remote IP addresses, and physical locations as subject credentials to combine with the requested objects and privilege modes. Access control algorithms are developed for subjects, objects, and access privileges. A secure implementation architecture is presented. In summary, the dissertation has developed security analysis and improvement model for the web-based application. Future work will address Markov Process Model validation when security data collection becomes easy. Security improvement model will be evaluated in performance aspect

    Security Analysis and Improvement Model for Web-based Applications

    Get PDF
    Today the web has become a major conduit for information. As the World Wide Web?s popularity continues to increase, information security on the web has become an increasing concern. Web information security is related to availability, confidentiality, and data integrity. According to the reports from http://www.securityfocus.com in May 2006, operating systems account for 9% vulnerability, web-based software systems account for 61% vulnerability, and other applications account for 30% vulnerability. In this dissertation, I present a security analysis model using the Markov Process Model. Risk analysis is conducted using fuzzy logic method and information entropy theory. In a web-based application system, security risk is most related to the current states in software systems and hardware systems, and independent of web application system states in the past. Therefore, the web-based applications can be approximately modeled by the Markov Process Model. The web-based applications can be conceptually expressed in the discrete states of (web_client_good; web_server_good, web_server_vulnerable, web_server_attacked, web_server_security_failed; database_server_good, database_server_vulnerable, database_server_attacked, database_server_security_failed) as state space in the Markov Chain. The vulnerable behavior and system response in the web-based applications are analyzed in this dissertation. The analyses focus on functional availability-related aspects: the probability of reaching a particular security failed state and the mean time to the security failure of a system. Vulnerability risk index is classified in three levels as an indicator of the level of security (low level, high level, and failed level). An illustrative application example is provided. As the second objective of this dissertation, I propose a security improvement model for the web-based applications using the GeoIP services in the formal methods. In the security improvement model, web access is authenticated in role-based access control using user logins, remote IP addresses, and physical locations as subject credentials to combine with the requested objects and privilege modes. Access control algorithms are developed for subjects, objects, and access privileges. A secure implementation architecture is presented. In summary, the dissertation has developed security analysis and improvement model for the web-based application. Future work will address Markov Process Model validation when security data collection becomes easy. Security improvement model will be evaluated in performance aspect

    Adaptive security

    Get PDF
    Automated runtime security adaptation has great potential in providing timely and fine grained security control. In this thesis we study the practical utility of a runtime security-performance trade off for the pervasive Secure Socket Layer (SSL/TLS) protocol. To that end we address a number of research challenges. We develop an Adaptive Security methodology to extend non-adaptive legacy security systems with adaptive features. We also create a design of such an extended system to support the methodology. The design aids in identifying additional key components necessary for the creation of an adaptive security system. We furthermore apply our methodology to the Secure Socket Layer (SSL) protocol to create a design and implementation of a practical Adaptive SSL (ASSL) solution that supports runtime security adaptation in response to cross-cutting environmental concerns. The solution effectively adapts security at runtime, only reducing maximum server load by 15% or more depending on adaptation decision complexity. Next we address the security-performance trade off research challenge. Following our methodology we conduct an offline study of factors affecting server performance when security is adapted. These insights allow for the creation of policies that can trade off security and performance by taking into account the expected future state of the system under adaptation. In so doing we found that client SSL session duration, requested file size and current security algorithm play roles predicting future system state. Notably, performance deviation is smaller when sessions are longer and files are smaller and vice versa. A complete Adaptive Security solution which successfully demonstrates our methodology is implemented with trade-off policies and ASSL as key components. We show that the solution effectively utilises available processing resources to increase security whilst still respecting performance guarantees.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore