74,538 research outputs found

    Distribution System State Estimation in the Presence of High Solar Penetration

    Full text link
    Low-to-medium voltage distribution networks are experiencing rising levels of distributed energy resources, including renewable generation, along with improved sensing, communication, and automation infrastructure. As such, state estimation methods for distribution systems are becoming increasingly relevant as a means to enable better control strategies that can both leverage the benefits and mitigate the risks associated with high penetration of variable and uncertain distributed generation resources. The primary challenges of this problem include modeling complexities (nonlinear, non-convex power-flow equations), limited availability of sensor measurements, and high penetration of uncertain renewable generation. This paper formulates the distribution system state estimation as a nonlinear, weighted, least squares problem, based on sensor measurements as well as forecast data (both load and generation). We investigate the sensitivity of state estimator accuracy to (load/generation) forecast uncertainties, sensor accuracy, and sensor coverage levels.Comment: accepted for presentation at the IEEE 2019 American Control Conferenc

    Interval state estimation for uncertain nonlinear systems

    Get PDF
    International audienceThe objective of this work is to develop some design methods of interval observers for a class of nonlinear continuous-time systems. It is assumed that the estimated system can be represented as a superposition of the nominal subsystem (belonged to the class of uniformly observable systems) and a Lipschitz nonlinear perturbation vanishing at the origin. Then it is shown there exists an interval observer for the system that estimates the set of admissible values for the state consistent with the output measurements. An example of the observer application is given with computer simulation results

    Robust Adaptive Control Barrier Functions: An Adaptive & Data-Driven Approach to Safety (Extended Version)

    Full text link
    A new framework is developed for control of constrained nonlinear systems with structured parametric uncertainties. Forward invariance of a safe set is achieved through online parameter adaptation and data-driven model estimation. The new adaptive data-driven safety paradigm is merged with a recent adaptive control algorithm for systems nominally contracting in closed-loop. This unification is more general than other safety controllers as closed-loop contraction does not require the system be invertible or in a particular form. Additionally, the approach is less expensive than nonlinear model predictive control as it does not require a full desired trajectory, but rather only a desired terminal state. The approach is illustrated on the pitch dynamics of an aircraft with uncertain nonlinear aerodynamics.Comment: Added aCBF non-Lipschitz example and discussion on approach implementatio

    A Robust Continuous Time Fixed Lag Smoother for Nonlinear Uncertain Systems

    Full text link
    This paper presents a robust fixed lag smoother for a class of nonlinear uncertain systems. A unified scheme, which combines a nonlinear robust estimator with a stable fixed lag smoother, is presented to improve the error covariance of the estimation. The robust fixed lag smoother is based on the use of Integral Quadratic Constraints and minimax LQG control. The state estimator uses a copy of the system nonlinearity in the estimator and combines an approximate model of the delayed states to produce a smoothed signal. In order to see the effectiveness of the method, it is applied to a quantum optical phase estimation problem. Results show significant improvement in the error covariance of the estimator using fixed lag smoother in the presence of nonlinear uncertainty.Comment: 8 pages, will be presented in 52nd Conference on Decision and Contro

    Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation

    Get PDF
    Copyright [2001] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.We investigate the robust filter design problem for a class of nonlinear time-delay stochastic systems. The system under study involves stochastics, unknown state time-delay, parameter uncertainties, and unknown nonlinear disturbances, which are all often encountered in practice and the sources of instability. The aim of this problem is to design a linear, delayless, uncertainty-independent state estimator such that for all admissible uncertainties as well as nonlinear disturbances, the dynamics of the estimation error is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are proposed to guarantee the existence of desired robust exponential filters, which are derived in terms of the solutions to algebraic Riccati inequalities. The developed theory is illustrated by numerical simulatio
    • …
    corecore