10,528 research outputs found

    Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence

    Full text link
    We study the {edge-coloring} problem in the message-passing model of distributed computing. This is one of the most fundamental and well-studied problems in this area. Currently, the best-known deterministic algorithms for (2Delta -1)-edge-coloring requires O(Delta) + log-star n time \cite{PR01}, where Delta is the maximum degree of the input graph. Also, recent results of \cite{BE10} for vertex-coloring imply that one can get an O(Delta)-edge-coloring in O(Delta^{epsilon} \cdot \log n) time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta log n) time, for an arbitrarily small constant epsilon > 0. In this paper we devise a drastically faster deterministic edge-coloring algorithm. Specifically, our algorithm computes an O(Delta)-edge-coloring in O(Delta^{epsilon}) + log-star n time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta) + log-star n time. This result improves the previous state-of-the-art {exponentially} in a wide range of Delta, specifically, for 2^{Omega(\log-star n)} \leq Delta \leq polylog(n). In addition, for small values of Delta our deterministic algorithm outperforms all the existing {randomized} algorithms for this problem. On our way to these results we study the {vertex-coloring} problem on the family of graphs with bounded {neighborhood independence}. This is a large family, which strictly includes line graphs of r-hypergraphs for any r = O(1), and graphs of bounded growth. We devise a very fast deterministic algorithm for vertex-coloring graphs with bounded neighborhood independence. This algorithm directly gives rise to our edge-coloring algorithms, which apply to {general} graphs. Our main technical contribution is a subroutine that computes an O(Delta/p)-defective p-vertex coloring of graphs with bounded neighborhood independence in O(p^2) + \log-star n time, for a parameter p, 1 \leq p \leq Delta

    Facial unique-maximum colorings of plane graphs with restriction on big vertices

    Get PDF
    A facial unique-maximum coloring of a plane graph is a proper coloring of the vertices using positive integers such that each face has a unique vertex that receives the maximum color in that face. Fabrici and G\"{o}ring (2016) proposed a strengthening of the Four Color Theorem conjecturing that all plane graphs have a facial unique-maximum coloring using four colors. This conjecture has been disproven for general plane graphs and it was shown that five colors suffice. In this paper we show that plane graphs, where vertices of degree at least four induce a star forest, are facially unique-maximum 4-colorable. This improves a previous result for subcubic plane graphs by Andova, Lidick\'y, Lu\v{z}ar, and \v{S}krekovski (2018). We conclude the paper by proposing some problems.Comment: 8 pages, 5 figure
    corecore