132,229 research outputs found

    Approaches to overcome flow cytometry limitations in the analysis of cells from veterinary relevant species

    Get PDF
    BACKGROUND: Flow cytometry is a powerful tool for the multiparameter analysis of leukocyte subsets on the single cell level. Recent advances have greatly increased the number of fluorochrome-labeled antibodies in flow cytometry. In particular, an increase in available fluorochromes with distinct excitation and emission spectra combined with novel multicolor flow cytometers with several lasers have enhanced the generation of multidimensional expression data for leukocytes and other cell types. However, these advances have mainly benefited the analysis of human or mouse cell samples given the lack of reagents for most animal species. The flow cytometric analysis of important veterinary, agricultural, wildlife, and other animal species is still hampered by several technical limitations, even though animal species other than the mouse can serve as more accurate models of specific human physiology and diseases. RESULTS: Here we present time-tested approaches that our laboratory regularly uses in the multiparameter flow cytometric analysis of ovine leukocytes. The discussed approaches will be applicable to the analysis of cells from most animal species and include direct modification of antibodies by covalent conjugation or Fc-directed labeling (Zenon™ technology), labeled secondary antibodies and other second step reagents, labeled receptor ligands, and antibodies with species cross-reactivity. CONCLUSIONS: Using refined technical approaches, the number of parameters analyzed by flow cytometry per cell sample can be greatly increased, enabling multidimensional analysis of rare samples and giving critical insight into veterinary and other less commonly analyzed species. By maximizing information from each cell sample, multicolor flow cytometry can reduce the required number of animals used in a study

    Chromosome Centromeres: Structural and Analytical Investigations with High Resolution Scanning Electron Microscopy in Combination with Focused Ion Beam Milling

    Get PDF
    Whole mount mitotic metaphase chromosomes of different plants and animals were investigated with high resolution field emission scanning electron microscopy (FESEM) to study the ultrastructural organization of centromeres, including metacentric, acrocentric, telocentric, and holocentric chromosome variants. It could be shown that, in general, primary constrictions have distinctive ultrastructural features characterized by parallel matrix fibrils and fewer smaller chromomeres. Exposure of these structures depends on cell cycle synchronization prior to chromosome isolation, chromosome size, and chromosome isolation technique. Chromosomes without primary constrictions, small chromosomes, and holocentric chromosomes do not exhibit distinct ultrastructural elements that could be directly correlated to centromere function. Putative spindle structures, although rarely observed, spread over the primary constriction to the bordering pericentric regions. Analytical FESEM techniques, including specific DNA staining with Pt blue, staining of protein as a substance class with silver-colloid, and artificial loosening of fixed chromosomes with proteinase K, were applied, showing that centromere variants and ultrastructural elements in the centromere differ in DNA and protein distribution. Immunogold localization allowed high-resolution comparison between chromosomes with different centromere orientations of the distribution of centromere-related histone variants, phosphorylated histone H3 (ser10), and CENH3. A novel application of FESEM combined with focused ion beam milling (FIB) provided new insights into the spatial distribution of these histone variants in barley chromosomes. Copyright (C) 2009 S. Karger AG, Base

    Magnetic Resonance imaging (MRI) in detection of _Bifidobacterium longum_ and _Clostridium novyi-NT_ labeled with superparamagnetic iron oxide (SPIO) nanoparticle

    Get PDF
    *Purpose:* To investigate the MR imaging of _Bifidobacterium longum_ and _Clostridium novyi-NT_ labeling with superparamagnetic iron oxide (SPIO) nanoparticles.

*Materials and methods:* Tubes containing _B. longum_-SPIO, Free-SPIO, _B. longum_ and PYG Medium were incubated under anaerobic condition in _in vitro_ experiment. Transmission electron microscope and Prussian blue staining were used to demonstrate intra-bacteria nanoparticles. R~2~^*^ mapping and R~2~ mapping were reconstructed after MR scanning. _B. longum_-SPIO and _C. novyi_-NT-SPIO were injected respectively _in vivo_ to show whether it might be traced by MR imaging.

*Results:* Magnetosomes in bacteria were observed by electron microscopic and stained by Prussian blue staining. At the same concentration of SPIOs, the R~2~^*^ value of _B. longum_-SPIO was significantly higher than that of Free-SPIO (P<0.001), however, the R~2~ value was lower comparing with Free-SPIO (P<0.001). After injection with _B. longum_-SPIO, they could present in tumor and shorten T~2~^*^.

*Conclusion:* _B. longum_ and _C. novyi_-NT could be labeled by SPIO and then traced by MRI

    In vitro and in vivo validation of human and goat chondrocyte labeling by green fluorescent protein lentivirus transduction

    Get PDF
    We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies

    The cell cycle–apoptosis connection revisited in the adult brain

    Get PDF
    Adult neurogenesis is studied in vivo using thymidine analogues such as bromodeoxyuridine (BrdU) to label DNA synthesis during the S phase of the cell cycle. However, BrdU may also label DNA synthesis events not directly related to cell proliferation, such as DNA repair and/or abortive reentry into the cell cycle, which can occur as part of an apoptotic process in postmitotic neurons. In this study, we used three well-characterized models of injury-induced neuronal apoptosis and the combined visualization of cell birth (BrdU labeling) and death (Tdt-mediated dUTP-biotin nick end labeling) to investigate the specificity of BrdU incorporation in the adult mouse brain in vivo. We present evidence that BrdU is not significantly incorporated during DNA repair and that labeling is not detected in vulnerable or dying postmitotic neurons, even when a high dose of BrdU is directly infused into the brain. These findings have important implications for a controversy surrounding adult neurogenesis: the connection between cell cycle reactivation and apoptosis of terminally differentiated neurons

    The structural organization and protein composition of lens fiber junctions.

    Get PDF
    The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined

    Towards many colors in FISH on 3D-preserved interphase nuclei

    Get PDF
    The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel

    Molecular Weight Distribution of Proteins Synthesized in Single, Identified Neurons of Aplysia

    Get PDF
    Parietovisceral ganglia from Aplysia californica were incubated in medium containing leucine-3H. Single, identified nerve cell somas were isolated from the ganglia, and their proteins extracted and separated by electrophoresis on 5% SDS-polyacrylamide gels. The distribution of total or newly synthesized proteins from the single neurons was determined by staining or slicing and liquid scintillation counting of the gels. Experiments showed that: (a) a number of proteins were being synthesized in abundance in the nerve cells; (b) different, identified neurons showed reproducibly different labeling patterns in the gels; (c) cells R2 and R15, which showed different distributions of radioactivity in the gels, had similar staining patterns; and (d) there was significant incorporation into material of high (>75,000) molecular weight in most of the cells

    Tetanic Stimulation Leads to Increased Accumulation of Ca^(2+)/Calmodulin-Dependent Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons

    Get PDF
    mRNA for the ɑ-subunit of CaMKII is abundant in dendrites of neurons in the forebrain (Steward, 1997). Here we show that tetanic stimulation of the Schaffer collateral pathway causes an increase in the concentration of ɑ-CaMKII in the dendrites of postsynaptic neurons. The increase is blocked by anisomycin and is detected by both quantitative immunoblot and semiquantitative immunocytochemistry. The increase in dendritic ɑ-CaMKII can be measured 100-200 µm away from the neuronal cell bodies as early as 5 min after a tetanus. Transport mechanisms for macromolecules from neuronal cell bodies are not fast enough to account for this rapid increase in distal portions of the dendrites. Therefore, we conclude that dendritic protein synthesis must produce a portion of the newly accumulated CaMKII. The increase in concentration of dendritic CaMKII after tetanus, together with the previously demonstrated increase in autophosphorylated CaMKII (Ouyang et al., 1997), will produce a prolonged increase in steady-state kinase activity in the dendrites, potentially influencing mechanisms of synaptic plasticity that are controlled through phosphorylation by CaMKII
    corecore