37,163 research outputs found
Stack Overflow: A Code Laundering Platform?
Developers use Question and Answer (Q&A) websites to exchange knowledge and
expertise. Stack Overflow is a popular Q&A website where developers discuss
coding problems and share code examples. Although all Stack Overflow posts are
free to access, code examples on Stack Overflow are governed by the Creative
Commons Attribute-ShareAlike 3.0 Unported license that developers should obey
when reusing code from Stack Overflow or posting code to Stack Overflow. In
this paper, we conduct a case study with 399 Android apps, to investigate
whether developers respect license terms when reusing code from Stack Overflow
posts (and the other way around). We found 232 code snippets in 62 Android apps
from our dataset that were potentially reused from Stack Overflow, and 1,226
Stack Overflow posts containing code examples that are clones of code released
in 68 Android apps, suggesting that developers may have copied the code of
these apps to answer Stack Overflow questions. We investigated the licenses of
these pieces of code and observed 1,279 cases of potential license violations
(related to code posting to Stack overflow or code reuse from Stack overflow).
This paper aims to raise the awareness of the software engineering community
about potential unethical code reuse activities taking place on Q&A websites
like Stack Overflow.Comment: In proceedings of the 24th IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER
Is Stack Overflow Overflowing With Questions and Tags
Programming question and answer (Q & A) websites, such as Quora, Stack
Overflow, and Yahoo! Answer etc. helps us to understand the programming
concepts easily and quickly in a way that has been tested and applied by many
software developers. Stack Overflow is one of the most frequently used
programming Q\&A website where the questions and answers posted are presently
analyzed manually, which requires a huge amount of time and resource. To save
the effort, we present a topic modeling based technique to analyze the words of
the original texts to discover the themes that run through them. We also
propose a method to automate the process of reviewing the quality of questions
on Stack Overflow dataset in order to avoid ballooning the stack overflow with
insignificant questions. The proposed method also recommends the appropriate
tags for the new post, which averts the creation of unnecessary tags on Stack
Overflow.Comment: 11 pages, 7 figures, 3 tables Presented at Third International
Symposium on Women in Computing and Informatics (WCI-2015
From Query to Usable Code: An Analysis of Stack Overflow Code Snippets
Enriched by natural language texts, Stack Overflow code snippets are an
invaluable code-centric knowledge base of small units of source code. Besides
being useful for software developers, these annotated snippets can potentially
serve as the basis for automated tools that provide working code solutions to
specific natural language queries.
With the goal of developing automated tools with the Stack Overflow snippets
and surrounding text, this paper investigates the following questions: (1) How
usable are the Stack Overflow code snippets? and (2) When using text search
engines for matching on the natural language questions and answers around the
snippets, what percentage of the top results contain usable code snippets?
A total of 3M code snippets are analyzed across four languages: C\#, Java,
JavaScript, and Python. Python and JavaScript proved to be the languages for
which the most code snippets are usable. Conversely, Java and C\# proved to be
the languages with the lowest usability rate. Further qualitative analysis on
usable Python snippets shows the characteristics of the answers that solve the
original question. Finally, we use Google search to investigate the alignment
of usability and the natural language annotations around code snippets, and
explore how to make snippets in Stack Overflow an adequate base for future
automatic program generation.Comment: 13th IEEE/ACM International Conference on Mining Software
Repositories, 11 page
Stack Overflow in Github: Any Snippets There?
When programmers look for how to achieve certain programming tasks, Stack
Overflow is a popular destination in search engine results. Over the years,
Stack Overflow has accumulated an impressive knowledge base of snippets of code
that are amply documented. We are interested in studying how programmers use
these snippets of code in their projects. Can we find Stack Overflow snippets
in real projects? When snippets are used, is this copy literal or does it
suffer adaptations? And are these adaptations specializations required by the
idiosyncrasies of the target artifact, or are they motivated by specific
requirements of the programmer? The large-scale study presented on this paper
analyzes 909k non-fork Python projects hosted on Github, which contain 290M
function definitions, and 1.9M Python snippets captured in Stack Overflow.
Results are presented as quantitative analysis of block-level code cloning
intra and inter Stack Overflow and GitHub, and as an analysis of programming
behaviors through the qualitative analysis of our findings.Comment: 14th International Conference on Mining Software Repositories, 11
page
How to Ask for Technical Help? Evidence-based Guidelines for Writing Questions on Stack Overflow
Context: The success of Stack Overflow and other community-based
question-and-answer (Q&A) sites depends mainly on the will of their members to
answer others' questions. In fact, when formulating requests on Q&A sites, we
are not simply seeking for information. Instead, we are also asking for other
people's help and feedback. Understanding the dynamics of the participation in
Q&A communities is essential to improve the value of crowdsourced knowledge.
Objective: In this paper, we investigate how information seekers can increase
the chance of eliciting a successful answer to their questions on Stack
Overflow by focusing on the following actionable factors: affect, presentation
quality, and time.
Method: We develop a conceptual framework of factors potentially influencing
the success of questions in Stack Overflow. We quantitatively analyze a set of
over 87K questions from the official Stack Overflow dump to assess the impact
of actionable factors on the success of technical requests. The information
seeker reputation is included as a control factor. Furthermore, to understand
the role played by affective states in the success of questions, we
qualitatively analyze questions containing positive and negative emotions.
Finally, a survey is conducted to understand how Stack Overflow users perceive
the guideline suggestions for writing questions.
Results: We found that regardless of user reputation, successful questions
are short, contain code snippets, and do not abuse with uppercase characters.
As regards affect, successful questions adopt a neutral emotional style.
Conclusion: We provide evidence-based guidelines for writing effective
questions on Stack Overflow that software engineers can follow to increase the
chance of getting technical help. As for the role of affect, we empirically
confirmed community guidelines that suggest avoiding rudeness in question
writing.Comment: Preprint, to appear in Information and Software Technolog
- …
