3,547,174 research outputs found

    Stable Sarma State in Two-band Fermi Systems

    Full text link
    We investigate fermionic superconductivity with mismatched Fermi surfaces in a general two-band system. The exchange interaction between the two bands changes significantly the stability structure of the pairing states. The Sarma state with two gapless Fermi surfaces which is always unstable in single-band systems, can be the stable ground state in two-band systems. To realize a visible mismatch window for the stable Sarma state, two conditions should be satisfied: a nonzero inter-band exchange interaction and a large asymmetry between the two bands.Comment: V3: Version published in Physical Review

    Topologically stable gapped state in a layered superconductor

    Full text link
    We show that a layered superconductor, described by a two-component order parameter, has a gapped state above the ground state, topologically protected from decay, containing flow and counter flow in the absence of an applied magnetic field. This state is made of skyrmions, breaks time reversal symmetry and produces a weak local magnetic field below the present threshold of detection by μ\muSR and NMR/NQR. We estimate the density of carriers that condense into the pseudogap.Comment: 6 pages, 4 figure

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Search for the most stable massive state in superstring theory

    Full text link
    In ten dimensional type II superstring, all perturbative massive states are unstable, typically with a short lifetime compared to the string scale. We find that the lifetime of the average string state of mass M has the asymptotic form T < const.1/(g^2 M). The most stable string state seems to be a certain state with high angular momentum which can be classically viewed as a circular string rotating in several planes ("the rotating ring"), predominantly decaying by radiating soft massless NS-NS particles, with a lifetime T = c_0 M^5/g^2. Remarkably, the dominant channel is the decay into a similar rotating ring state of smaller mass. The total lifetime to shrink to zero size is ~ M^7. In the presence of D branes, decay channels involving open strings in the final state are exponentially suppressed, so the lifetime is still proportional to M^5, except for a D brane at a special angle or flux. For large mass, the spectrum for massless emission exhibits qualitative features typical of a thermal spectrum, such as a maximum and an exponential tail. We also discuss the decay properties of rotating rings in the case of compact dimensions.Comment: 24 pages, 1 figure. Correction on lifetime of average stat

    Equation of state for β\beta-stable hot nuclear matter

    Full text link
    We provide an equation of state for hot nuclear matter in β\beta-equilibrium by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos have left the system. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of proton and lepton fractions and afterwards of internal energy, free energy, pressure and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation of state of nuclear matter are assesed and analyzed in the framework of the proposed effective interaction model. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 28 pages, 18 figure

    Propagator poles and an emergent stable state below threshold: general discussion and the E(38) state

    Full text link
    In the framework of a simple quantum field theory describing the decay of a scalar state into two (pseudo)scalar ones we study the pole(s) motion(s) of its propagator: besides the expected pole on the second Riemann sheet, we find -- for a large enough coupling constant -- a second, additional pole on the first Riemann sheet below threshold, which corresponds to a stable state. We then perform a numerical study for a hadronic system in which a scalar particle couples to pions. We investigate under which conditions a stable state below the two-pion threshold can emerge. In particular, we study the case in which this stable state has a mass of 38 MeV, which corresponds to the recently claimed novel scalar state E(38). Moreover, we also show that the resonance f0(500)f_{0}(500) and the stable state E(38) could be two different manifestation of the same `object'. Finally, we also estimate the order of magnitude of its coupling to photons.Comment: 9 pages, 4 figure
    corecore