10 research outputs found

    Towards Agility: Definition, Benchmark and Design Considerations for Small, Quadrupedal Robots

    Get PDF
    Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common benchmark can be found. Further, it is unclear, what minimal level of mechatronic complexity is needed for this particular aspect of locomotion. In this thesis we address and partially answer two primary questions: (Q1) What is agile legged locomotion (agility) and how can wemeasure it? (Q2) How can wemake agile legged locomotion with a robot a reality? To answer our first question, we define agility for robot and animal alike, building a common ground for this particular component of locomotion and introduce quantitative measures to enhance robot evaluation and comparison. The definition is based on and inspired by features of agility observed in nature, sports, and suggested in robotics related publications. Using the results of this observational and literature review, we build a novel and extendable benchmark of thirteen different tasks that implement our vision of quantitatively classifying agility. All scores are calculated from simple measures, such as time, distance, angles and characteristic geometric values for robot scaling. We normalize all unit-less scores to reach comparability between different systems. An initial implementation with available robots and real agility-dogs as baseline finalize our effort of answering the first question. Bio-inspired designs introducing and benefiting from morphological aspects present in nature allowed the generation of fast, robust and energy efficient locomotion. We use engineering tools and interdisciplinary knowledge transferred from biology to build low-cost robots able to achieve a certain level of agility and as a result of this addressing our second question. This iterative process led to a series of robots from Lynx over Cheetah-Cub-S, Cheetah-Cub-AL, and Oncilla to Serval, a compliant robot with actuated spine, high range of motion in all joints. Serval presents a high level of mobility at medium speeds. With many successfully implemented skills, using a basic kinematics-duplication from dogs (copying the foot-trajectories of real animals and replaying themotion on the robot using a mathematical interpretation), we found strengths to emphasize, weaknesses to correct and made Serval ready for future attempts to achieve even more agile locomotion. We calculated Servalâs agility scores with the result of it performing better than any of its predecessors. Our small, safe and low-cost robot is able to execute up to 6 agility tasks out of 13 with the potential to reachmore after extended development. Concluding, we like to mention that Serval is able to cope with step-downs, smooth, bumpy terrain and falling orthogonally to the ground

    Energetics and Passive Dynamics of Quadruped Robot Planar Running Gaits

    Get PDF
    Quadruped robots find application in military for load carrying over uneven terrain, humanitarian de-mining, and search and rescue missions. The energy required for quadruped robot locomotion needs to be supplied from on-board energy source which can be either electrical batteries or fuels such as gasolene/diesel. The range and duration of missions very much depend on the amount of energy carried, which is highly limited. Hence, energy efficiency is of paramount importance in building quadruped robots. Study of energy efficiency in quadruped robots not only helps in efficient design of quadruped robots, but also helps understand the biomechanics of quadrupedal animals. This thesis focuses on the energy efficiency of planar running gaits and presents: (a) derivation of cost of transport expressions for trot and bounding gaits, (b) advantages of articulated torso over rigid torso for quadruped robot, (c) symmetry based control laws for passive dynamic bounding and design for inherent stability, and (d) effect of asymmetry in zero-energy bounding gaits

    BIOMECHANICS OF TERRESTRIAL LOCOMOTION: ASYMMETRIC OCTOPEDAL AND QUADRUPEDAL GAITS

    Get PDF
    The main goal of this dissertation is to investigate the biomechanics of octopedal and quadrupedal locomotion in terrestrial animals, common determinants, advantages and limits, in particular of the asymmetric gaits. Two different approach have been chosen: i) a kinematic study of a terrestrial spider, the Brazilian giant tawny-red tarantula, an octopods predator species that hide in burrows, ambush and rapidly bounce the prey with a sprint, and ii) a comparative study of the two types of gallop of the cursorial terrestrial mammals. Eight-legs locomotion has been one of the first travelling modes on land, and spiders display one of the most versatile locomotor repertoire: they move at slow and fast speed, forward-backward-sideways, they climb and even jump, both on firm terrain and from the water surface. Spiders can walk in the two senses at the same speed, just by reversing their diagonal footfall scheme. They turn on the spot like an armoured tank, with opposite direction of the two treads of limbs. Also, the high number of limbs ensures an increased locomotor versatility on uneven and rough terrains, particularly in the likely unawareness of each endpoint location on the ground. The aims of this first part were: i) identifying the principal octopod gaits, ii) calculating the mechanical external and internal work at the different speeds/gaits, iii) assessing any tendency to exchange potential and kinetic energy of the body centre of mass, as in pendulum-like gaits, and iv) evaluating how spiders\u2019 mechanical performance and variables allometrically compare to other species. Another question was: can the octopod gaits be considered as different combinations of two quadrupeds\u2019 locomotion? In this investigation we used inverse dynamics to study the locomotor performance of a terrestrial spider. 9 reflective markers have been placed on the tip of the 8 legs and on the cephalothorax, and their position recorded at a frequency of 50 Hz and digitized through a motion analysis system. Data have been processed using LabView (National Instruments, USA) specific development. The 3D trajectories of the body centre of mass in local coordinates, as during locomotion on a treadmill, have been calculated by applying a mathematical method based on the Fourier analysis of the three coordinates of the centre of mass (COM) over time. Two main gaits, a slow and a fast one characterised by distinctive 3D trajectories of COM, have been identified. The calculated total mechanical work (= external+internal) and metabolic data from the literature allowed estimating the locomotion efficiency of this species, which resulted less than 4%. Octopod gait pattern due to alternating limb support, which generates asymmetrical COM trajectories and a small but consistent energy transfer between potential and kinetic energies of COM, can be considered as formed by two subsequent quadrupeds, where the first two pairs of feet (1 and 2) are the fore and the hind feet of the first quadruped, and the third and fourth pairs are the fore and hind feet of the second quadruped. The two quadrupeds are almost in phase, being the first and third pairs synchronised in their movements as well as the second and fourth. Octopedal locomotion exhibits two main gaits, neither of which incorporating a flight phase, characterised by a consistent limb pattern and a small but remarkable energy recovery index. Gallop has been chosen as model of asymmetric cursorial locomotion in quadrupeds. In transverse gallop the placement of the second hind foot is followed by that of the contralateral forefoot, while in rotary gallop is followed by the ipsilateral forefoot, and the sequence of footfalls appears to rotate around the body. The question are: why two models of gallop? Are they specie-specific? Which are the biomechanical determinants of the choice between transverse and rotary gallop? Aims of this part of the research were: i) assess, when possible, the specie-specificity of the gallop type in different cursorial mammal species, ii) phylogenetically classify the investigated species, iii) Made a comparative analysis based on morphological, physiological and environmental differences. 351 filmed sequences have been analysed to assess the gallop type of 89 investigated mammal species belonging to Carnivora, Artiodactyla and Perissodactyla orders. 23 biometrical, ecological and physiological parameters have been collected for each species both from literature data and from experimental measures. Most of the species showed only one kind of gallop: transverse (42%) or rotary (39%), while some species performed rotary gallop only at high speed (19%). In a multivariate factorial analysis the first principal component (PC), which accounted for 40% of the total variance, was positively correlated to the relative speed and negatively correlated to size and body mass. The second PC was correlated to the ratio between autopodial and zygopodial limb segments. Large size and longer proximal limb segments resulted associated to transverse gallop, while rotary and speed dependent species showed higher metacarpus/humerus and metatarsus/femur length ratio and faster relative speeds. The maximum angular excursion resulted proportional to the maximum Froude number, and significantly higher in rotary galloper. The gait pattern analysis provided significant differences between transverse and rotary gallop in fore and hind duty factor, and in duration of the fore contact. Our results assessed that a typical gallop gait is adopted by a large number of mammal species, and indicated that the gallop pattern depends on diverse environmental, morphometrical and biomechanical characters. Even if mammals and spiders can be considered far and different worlds, we can recognize common pattern of locomotion. The quadruped gaits have been modelled as the combination of two biped gaits with some difference in the phase-cycle, in the same way, we described the octopods gaits as the combination of two quadruped gaits in series. In conclusion, this work shed light on some aspects of octopedal and quadrupedal asymmetric gaits, opening to the raising of new questions and new perspective of research

    Fast Sensing and Adaptive Actuation for Robust Legged Locomotion

    Get PDF
    Robust legged locomotion in complex terrain demands fast perturbation detection and reaction. In animals, due to the neural transmission delays, the high-level control loop involving the brain is absent from mitigating the initial disturbance. Instead, the low-level compliant behavior embedded in mechanics and the mid-level controllers in the spinal cord are believed to provide quick response during fast locomotion. Still, it remains unclear how these low- and mid-level components facilitate robust locomotion. This thesis aims to identify and characterize the underlining elements responsible for fast sensing and actuation. To test individual elements and their interplay, several robotic systems were implemented. The implementations include active and passive mechanisms as a combination of elasticities and dampers in multi-segment robot legs, central pattern generators inspired by intraspinal controllers, and a synthetic robotic version of an intraspinal sensor. The first contribution establishes the notion of effective damping. Effective damping is defined as the total energy dissipation during one step, which allows quantifying how much ground perturbation is mitigated. Using this framework, the optimal damper is identified as viscous and tunable. This study paves the way for integrating effective dampers to legged designs for robust locomotion. The second contribution introduces a novel series elastic actuation system. The proposed system tackles the issue of power transmission over multiple joints, while featuring intrinsic series elasticity. The design is tested on a hopper with two more elastic elements, demonstrating energy recuperation and enhanced dynamic performance. The third contribution proposes a novel tunable damper and reveals its influence on legged hopping. A bio-inspired slack tendon mechanism is implemented in parallel with a spring. The tunable damping is rigorously quantified on a central-pattern-generator-driven hopping robot, which reveals the trade-off between locomotion robustness and efficiency. The last contribution explores the intraspinal sensing hypothesis of birds. We speculate that the observed intraspinal structure functions as an accelerometer. This accelerometer could provide fast state feedback directly to the adjacent central pattern generator circuits, contributing to birds’ running robustness. A biophysical simulation framework is established, which provides new perspectives on the sensing mechanics of the system, including the influence of morphologies and material properties. Giving an overview of the hierarchical control architecture, this thesis investigates the fast sensing and actuation mechanisms in several control layers, including the low-level mechanical response and the mid-level intraspinal controllers. The contributions of this work provide new insight into animal loco-motion robustness and lays the foundation for future legged robot design

    Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

    Get PDF
    In recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of online planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, we have seen a number of new approaches attempting to increase the accuracy of the dynamic formulation without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I describe the framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding while adapting to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without trading off their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint torques limits which are usually neglected at the planning stage. In this direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. For the sake of reachable workspace augmentation, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of the, so called, local/instantaneous actuation region and of the global actuation/feasible region. They both can be seen as different variants of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass while being able to carry its own body weight given its actuation capabilities. These areas can be intersected with the well known frictional support region, resulting in a 2D linear feasible region, thus providing an intuitive tool that enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains

    Investigating Sensorimotor Control in Locomotion using Robots and Mathematical Models

    Get PDF
    Locomotion is a very diverse phenomenon that results from the interactions of a body and its environment and enables a body to move from one position to another. Underlying control principles rely among others on the generation of intrinsic body movements, adaptation and synchronization of those movements with the environment, and the generation of respective reaction forces that induce locomotion. We use mathematical and physical models, namely robots, to investigate how movement patterns emerge in a specific environment, and to what extent central and peripheral mechanisms contribute to movement generation. We explore insect walking, undulatory swimming and bimodal terrestrial and aquatic locomotion. We present relevant findings that explain the prevalence of tripod gaits for fast climbing based on the outcome of an optimization procedure. We also developed new control paradigms based on local sensory pressure feedback for anguilliform swimming, which include oscillator-free and decoupled control schemes, and a new design methodology to create physical models for locomotion investigation based on a salamander-like robot. The presented work includes additional relevant contributions to robotics, specifically a new fast dynamically stable walking gait for hexapedal robots and a decentralized scheme for highly modular control of lamprey-like undulatory swimming robots

    Stable reflex-based walking of forelimbs of a bio-inspired quadruped robot-modeled cheetah

    No full text
    corecore