4 research outputs found

    Stable Multi-Level Monotonic Eroders

    Full text link
    Eroders are monotonic cellular automata with a linearly ordered state set that eventually wipe out any finite island of nonzero states. One-dimensional eroders were studied by Gal'perin in the 1970s, who presented a simple combinatorial characterization of the class. The multi-dimensional case has been studied by Toom and others, but no such characterization has been found. We prove a similar characterization for those one-dimensional monotonic cellular automata that are eroders even in the presence of random noise.Comment: 32 pages, 9 figure

    Stable Multi-Level Monotonic Eroders

    Get PDF
    Eroders are monotonic cellular automata with a linearly ordered state set that eventually wipe out any finite island of nonzero states. One-dimensional eroders were studied by Gal'perin in the 1970s, who presented a simple combinatorial characterization of the class. The multi-dimensional case has been studied by Toom and others, but no such characterization has been found. We prove a similar characterization for those one-dimensional monotonic cellular automata that are eroders even in the presence of random noise

    Simply modified GKL density classifiers that reach consensus faster

    Full text link
    The two-state Gacs-Kurdyumov-Levin (GKL) cellular automaton has been a staple model in the study of complex systems due to its ability to classify binary arrays of symbols according to their initial density. We show that a class of modified GKL models over extended neighborhoods, but still involving only three cells at a time, achieves comparable density classification performance but in some cases reach consensus more than twice as fast. Our results suggest the time to consensus (relative to the length of the CA) as a complementary measure of density classification performance.Comment: Short note, 3 pages, 1 table, 2 composite figures, 18 reference
    corecore