10 research outputs found

    Stabilizing data-link over non-FIFO channels with optimal fault-resilience

    Get PDF
    Self-stabilizing systems have the ability to converge to a correct behavior when started in any configuration. Most of the work done so far in the self-stabilization area assumed either communication via shared memory or via FIFO channels. This paper is the first to lay the bases for the design of self-stabilizing message passing algorithms over unreliable non-FIFO channels. We propose a fault-send-deliver optimal stabilizing data-link layer that emulates a reliable FIFO communication channel over unreliable capacity bounded non-FIFO channels

    Communication Optimalement Stabilisante sur Canaux non Fiables et non FIFO

    Get PDF
    A self-stabilizing protocol has the capacity to recover a legitimate behavior whatever is its initial state. The majority of works in self-stabilization assume a shared memory model or a communication using reliable and FIFO channels. In this article, we interest in self-stabilizing systems using bounded but non reliable and non FIFO channels. We propose a stabilizing communication protocol with optimal fault resilience. In more details, this protocol simulates a reliable and FIFO channel and ensures a minimal number of looses, duplications, creations, and re-ordering of messages

    Stabilizing Server-Based Storage in Byzantine Asynchronous Message-Passing Systems

    Full text link
    A stabilizing Byzantine single-writer single-reader (SWSR) regular register, which stabilizes after the first invoked write operation, is first presented. Then, new/old ordering inversions are eliminated by the use of a (bounded) sequence number for writes, obtaining a practically stabilizing SWSR atomic register. A practically stabilizing Byzantine single-writer multi-reader (SWMR) atomic register is then obtained by using several copies of SWSR atomic registers. Finally, bounded time-stamps, with a time-stamp per writer, together with SWMR atomic registers, are used to construct a practically stabilizing Byzantine multi-writer multi-reader (MWMR) atomic register. In a system of nn servers implementing an atomic register, and in addition to transient failures, the constructions tolerate t<n/8 Byzantine servers if communication is asynchronous, and t<n/3 Byzantine servers if it is synchronous. The noteworthy feature of the proposed algorithms is that (to our knowledge) these are the first that build an atomic read/write storage on top of asynchronous servers prone to transient failures, and where up to t of them can be Byzantine

    Disconnected components detection and rooted shortest-path tree maintenance in networks

    Get PDF
    International audienceMany articles deal with the problem of maintaining a rooted shortest-path tree. However, after some edge deletions, some nodes can be disconnected from the connected component VrV_r of some distinguished node rr. In this case, an additional objective is to ensure the detection of the disconnection by the nodes that no longer belong to VrV_r. We present a detailed analysis of a silent self-stabilizing algorithm. We prove that it solves this more demanding task in anonymous weighted networks with the following additional strong properties: it runs without any knowledge on the network and under the \emph{unfair} daemon, that is without any assumption on the asynchronous model. Moreover, it terminates in less than 2n+D2n+D rounds for a network of nn nodes and hop-diameter DD
    corecore