16 research outputs found

    Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians

    Get PDF
    Obtains feedback stabilization of an inverted pendulum on a rotor arm by the “method of controlled Lagrangians”. This approach involves modifying the Lagrangian for the uncontrolled system so that the Euler-Lagrange equations derived from the modified or “controlled” Lagrangian describe the closed-loop system. For the closed-loop equations to be consistent with available control inputs, the modifications to the Lagrangian must satisfy “matching” conditions. The pendulum on a rotor arm requires an interesting generalization of our earlier approach which was used for systems such as a pendulum on a cart

    Asymptotic stabilization of the heavy top using controlled Lagrangians

    Get PDF
    In this paper we extend the previous work on the asymptotic stabilization of pure Euler-Poincaré mechanical systems using controlled Lagrangians to the study of asymptotic stabilization of Euler-Poincaré mechanical systems such as the heavy top

    Asymptotic stabilization of Euler-Poincaré mechanical systems

    Get PDF
    Stabilization of mechanical control systems by the method of controlled Lagrangians and matching is used to analyze asymptotic stabilization of systems whose underlying dynamics are governed by the Euler-Poincar´e equations. In particular, we analyze asymptotic stabilization of a satellite

    Potential shaping and the method of controlled Lagrangians

    Get PDF
    We extend the method of controlled Lagrangians to include potential shaping for complete state-space stabilization of mechanical systems. The method of controlled Lagrangians deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline

    Potential and kinetic shaping for control of underactuated mechanical systems

    Get PDF
    This paper combines techniques of potential shaping with those of kinetic shaping to produce some new methods for stabilization of mechanical control systems. As with each of the techniques themselves, our method employs energy methods and the LaSalle invariance principle. We give explicit criteria for asymptotic stabilization of equilibria of mechanical systems which, in the absence of controls, have a kinetic energy function that is invariant under an Abelian group

    Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping

    Get PDF
    For pt.I, see ibid., vol.45, p.2253-70 (2000). We extend the method of controlled Lagrangians (CL) to include potential shaping, which achieves complete state-space asymptotic stabilization of mechanical systems. The CL method deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline
    corecore