433 research outputs found

    Delay-Adaptive Control of First-order Hyperbolic PIDEs

    Full text link
    We develop a delay-adaptive controller for a class of first-order hyperbolic partial integro-differential equations (PIDEs) with an unknown input delay. By employing a transport PDE to represent delayed actuator states, the system is transformed into a transport partial differential equation (PDE) with unknown propagation speed cascaded with a PIDE. A parameter update law is designed using a Lyapunov argument and the infinite-dimensional backstepping technique to establish global stability results. Furthermore, the well-posedness of the closed-loop system is analyzed. Finally, the effectiveness of the proposed method was validated through numerical simulation

    Robust stabilization of 2×22 \times 2 first-order hyperbolic PDEs with uncertain input delay

    Full text link
    A backstepping-based compensator design is developed for a system of 2×22\times2 first-order linear hyperbolic partial differential equations (PDE) in the presence of an uncertain long input delay at boundary. We introduce a transport PDE to represent the delayed input, which leads to three coupled first-order hyperbolic PDEs. A novel backstepping transformation, composed of two Volterra transformations and an affine Volterra transformation, is introduced for the predictive control design. The resulting kernel equations from the affine Volterra transformation are two coupled first-order PDEs and each with two boundary conditions, which brings challenges to the well-posedness analysis. We solve the challenge by using the method of characteristics and the successive approximation. To analyze the sensitivity of the closed-loop system to uncertain input delay, we introduce a neutral system which captures the control effect resulted from the delay uncertainty. It is proved that the proposed control is robust to small delay variations. Numerical examples illustrate the performance of the proposed compensator

    Delay-Adaptive Boundary Control of Coupled Hyperbolic PDE-ODE Cascade Systems

    Full text link
    This paper presents a delay-adaptive boundary control scheme for a 2×22\times 2 coupled linear hyperbolic PDE-ODE cascade system with an unknown and arbitrarily long input delay. To construct a nominal delay-compensated control law, assuming a known input delay, a three-step backstepping design is used. Based on the certainty equivalence principle, the nominal control action is fed with the estimate of the unknown delay, which is generated from a batch least-squares identifier that is updated by an event-triggering mechanism that evaluates the growth of the norm of the system states. As a result of the closed-loop system, the actuator and plant states can be regulated exponentially while avoiding Zeno occurrences. A finite-time exact identification of the unknown delay is also achieved except for the case that all initial states of the plant are zero. As far as we know, this is the first delay-adaptive control result for systems governed by heterodirectional hyperbolic PDEs. The effectiveness of the proposed design is demonstrated in the control application of a deep-sea construction vessel with cable-payload oscillations and subject to input delay
    • …
    corecore