2 research outputs found

    Planar Symmetric Juggling of a Devil-Stick

    Full text link
    Juggling a devil-stick can be described as a problem of non-prehensile manipulation. Assuming that the devil-stick remains confined to the vertical plane, the problem of juggling the stick between two symmetric configurations is considered. Impulsive forces are applied to the stick intermittently and the impulse of the force and its point of application are modeled as control inputs to the system. The dynamics of the devil-stick due to the impulsive forces and gravity is described by half-return maps between two Poincare sections; the symmetric configurations are fixed points of these sections. A coordinate transformation is used to convert the juggling problem to that of stabilization of one of the fixed points. Inclusion of the coordinate transformation in the dynamic model results in a nonlinear discrete-time system. A dead-beat design for one of the inputs simplifies the control problem and results in a linear time-invariant discrete-time system. Standard control techniques are used to show that symmetric juggling can be achieved from arbitrary initial conditions

    Orbital Stabilization of Underactuated Systems using Virtual Holonomic Constraints and Impulse Controlled Poincare Maps

    Full text link
    The problem of orbital stabilization of underactuated mechanical systems with one passive degree-of-freedom (DOF) is revisited. Virtual holonomic constraints are enforced using a continuous controller; this results in a dense set of closed orbits on a constraint manifold. A desired orbit is selected on the manifold and a Poincare section is constructed at a fixed point on the orbit. The corresponding Poincare map is linearized about the fixed point; this results in a discrete linear time-invariant system. To stabilize the desired orbit, impulsive inputs are applied when the system trajectory crosses the Poincare section; these inputs can be designed using standard techniques such as LQR. The Impulse Controlled Poincare Map (ICPM) based control design has lower complexity and computational cost than control designs proposed earlier. The generality of the ICPM approach is demonstrated using the 2-DOF cart-pendulum and the 3-DOF tiptoebot.Comment: The paper is under review in Systems and Control Letter
    corecore