275 research outputs found

    Static Balancing Control of Humanoid Robot based on Accelerometer

    Get PDF
    [[abstract]]A static balancing control method is proposed and implemented on a humanoid robot so that the robot can stand and balance on a plane. A small-size humanoid robot named TWNHR-IV with 26 degree-of-freedom (DOF) is implemented. A 3-axis accelerometer is installed on TWNHR-IV to obtain the x-axis, y-axis, and z-axis accelerations of TWNHR-IV. Based on the obtained information from the 3-axis accelerometer, a system structure with two two-input-and-one-output fuzzy systems is proposed. The acceleration and the accelerationpsilas variation of the x-axis obtained by the 3-axis accelerometer are considered to be the inputs of forward-and-backward fuzzy system. The acceleration and the accelerationpsilas variation of the y-axis are considered to be the inputs of right-and-left fuzzy system. Some practical tests are presented to illustrate the proposed method can let the humanoid robot stand and balance on a plane.[[conferencetype]]ĺś‹éš›[[conferencelocation]]Tokyo, Japa

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Compliance control for stabilizing the humanoid on the changing slope based on terrain inclination estimation

    Get PDF
    This paper presents a stabilization framework integrated with the estimation of the terrain inclination to balance a humanoid on the changing slope as an extension to our previous study. In this paper, the estimation of the terrain inclination is improved for walking in place on an inclination-varying slope. A passivity based admittance control utilizes the force/torque sensing in feet to actively regulate the impedance at the center of mass to stabilize the robot. The logic-based inclination estimation algorithm uses the feet to probe the terrain and deals with the under-actuation. The equilibrium set-point in the admittance control is regulated based on the detected inclination. The effectiveness of the control framework is validated on the humanoid robot COMAN and demonstrated by estimating the terrain inclination, coping with the under-actuation phase, adapting to the slope with changing inclination during both standing and walking. Experimental data are analyzed and discussed, and the future work is suggested

    Bio-inspired vertebral column, compliance and semi-passive dynamics in a lightweight robot

    Get PDF
    International audienceThis paper presents the humanoid robot Acroban. We study two main issues: 1) Compliance and semi-passive dynamics for locomotion of humanoid robots regarding robustness against unknown external perturbations; 2) The advantages of a bio-inspired multi-articulated vertebral column. We combine mechatronic compliance with structural compliance due to the use of flexible materials. And we explore how these capabilities allow to enforce morphological computation in the design of robust dynamic locomotion. We also investigate the use of compliance to design semi-passive motor primitives using the torso and the arms as a system of accumulation/release of potential/kinetic energy
    • …
    corecore