5,367 research outputs found

    Design, stability and applications of two dimensional recursive digital filters

    Get PDF
    Imperial Users onl

    Digital repetitive control under varying frequency conditions

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialThe tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control working under varying frequency conditions. These contributions can be organized as follows: One approach that overcomes the problem of working under time varying frequency conditions is the adaptation of the controller sampling period, nevertheless, the system framework changes from Linear Time Invariant to Linear Time-Varying and the closed-loop stability can be compromised. This work presents two different methodologies aimed at analysing the system stability under these conditions. The first one uses a Linear Matrix Inequality (LMI) gridding approach which provides necessary conditions to accomplish a sufficient condition for the closed-loop Bounded Input Bounded Output stability of the system. The second one applies robust control techniques in order to analyse the stability and yields sufficient stability conditions. Both methodologies yield a frequency variation interval for which the system stability can be assured. Although several approaches exist for the stability analysis of general time-varying sampling period controllers few of them allow an integrated controller design which assures closed-loop stability under such conditions. In this thesis two design methodologies are presented, which assure stability of the repetitive control system working under varying sampling period for a given frequency variation interval: a mu-synthesis technique and a pre-compensation strategy. On a second branch, High Order Repetitive Control (HORC) is mainly used to improve the repetitive control performance robustness under disturbance/reference signals with varying or uncertain frequency. Unlike standard repetitive control, the HORC involves a weighted sum of several signal periods. With a proper selection of the associated weights, this high order function offers a characteristic frequency response in which the high gain peaks located at harmonic frequencies are extended to a wider region around the harmonics. Furthermore, the use of an odd-harmonic internal model will make the system more appropriate for applications where signals have only odd-harmonic components, as in power electronics systems. Thus an Odd-harmonic High Order Repetitive Controller suitable for applications involving odd-harmonic type signals with varying/uncertain frequency is presented. The open loop stability of internal models used in HORC and the one presented here is analysed. Additionally, as a consequence of this analysis, an Anti-Windup (AW) scheme for repetitive control is proposed. This AW proposal is based on the idea of having a small steady state tracking error and fast recovery once the system goes out of saturation. The experimental validation of these proposals has been performed in two different applications: the Roto-magnet plant and the active power filter application. The Roto-magnet plant is an experimental didactic plant used as a tool for analysing and understanding the nature of the periodic disturbances, as well as to study the different control techniques used to tackle this problem. This plant has been adopted as experimental test bench for rotational machines. On the other hand, shunt active power filters have been widely used as a way to overcome power quality problems caused by nonlinear and reactive loads. These power electronics devices are designed with the goal of obtaining a power factor close to 1 and achieving current harmonics and reactive power compensation.Award-winningPostprint (published version

    The design of a turboshaft speed governor using modern control techniques

    Get PDF
    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient

    Real time flight simulation methodology

    Get PDF
    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals

    Design of multidimensional digital filters by spectral transformations

    Get PDF
    Imperial Users onl

    Coded spread spectrum digital transmission system design study

    Get PDF
    Results are presented of a comprehensive study of the performance of Viterbi-decoded convolutional codes in the presence of nonideal carrier tracking and bit synchronization. A constraint length 7, rate 1/3 convolutional code and parameters suitable for the space shuttle coded communications links are used. Mathematical models are developed and theoretical and simulation results are obtained to determine the tracking and acquisition performance of the system. Pseudorandom sequence spread spectrum techniques are also considered to minimize potential degradation caused by multipath

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version
    • …
    corecore