35,384 research outputs found

    Lyapunov Criterion for Stochastic Systems and Its Applications in Distributed Computation

    Get PDF
    This paper presents new sufficient conditions for convergence and asymptotic or exponential stability of a stochastic discrete-time system, under which the constructed Lyapunov function always decreases in expectation along the system's solutions after a finite number of steps, but without necessarily strict decrease at every step, in contrast to the classical stochastic Lyapunov theory. As the first application of this new Lyapunov criterion, we look at the product of any random sequence of stochastic matrices, including those with zero diagonal entries, and obtain sufficient conditions to ensure the product almost surely converges to a matrix with identical rows; we also show that the rate of convergence can be exponential under additional conditions. As the second application, we study a distributed network algorithm for solving linear algebraic equations. We relax existing conditions on the network structures, while still guaranteeing the equations are solved asymptotically.Comment: 14 pages, 1 figur

    Recent Advances in Computational Methods for the Power Flow Equations

    Get PDF
    The power flow equations are at the core of most of the computations for designing and operating electric power systems. The power flow equations are a system of multivariate nonlinear equations which relate the power injections and voltages in a power system. A plethora of methods have been devised to solve these equations, starting from Newton-based methods to homotopy continuation and other optimization-based methods. While many of these methods often efficiently find a high-voltage, stable solution due to its large basin of attraction, most of the methods struggle to find low-voltage solutions which play significant role in certain stability-related computations. While we do not claim to have exhausted the existing literature on all related methods, this tutorial paper introduces some of the recent advances in methods for solving power flow equations to the wider power systems community as well as bringing attention from the computational mathematics and optimization communities to the power systems problems. After briefly reviewing some of the traditional computational methods used to solve the power flow equations, we focus on three emerging methods: the numerical polynomial homotopy continuation method, Groebner basis techniques, and moment/sum-of-squares relaxations using semidefinite programming. In passing, we also emphasize the importance of an upper bound on the number of solutions of the power flow equations and review the current status of research in this direction.Comment: 13 pages, 2 figures. Submitted to the Tutorial Session at IEEE 2016 American Control Conferenc
    • …
    corecore