2 research outputs found

    Dynamic event-triggered-based human-in-the-loop formation control for stochastic nonlinear MASs

    Get PDF
    The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example

    Optimal adaptive control of time-delay dynamical systems with known and uncertain dynamics

    Get PDF
    Delays are found in many industrial pneumatic and hydraulic systems, and as a result, the performance of the overall closed-loop system deteriorates unless they are explicitly accounted. It is also possible that the dynamics of such systems are uncertain. On the other hand, optimal control of time-delay systems in the presence of known and uncertain dynamics by using state and output feedback is of paramount importance. Therefore, in this research, a suite of novel optimal adaptive control (OAC) techniques are undertaken for linear and nonlinear continuous time-delay systems in the presence of uncertain system dynamics using state and/or output feedback. First, the optimal regulation of linear continuous-time systems with state and input delays by utilizing a quadratic cost function over infinite horizon is addressed using state and output feedback. Next, the optimal adaptive regulation is extended to uncertain linear continuous-time systems under a mild assumption that the bounds on system matrices are known. Subsequently, the event-triggered optimal adaptive regulation of partially unknown linear continuous time systems with state-delay is addressed by using integral reinforcement learning (IRL). It is demonstrated that the optimal control policy renders asymptotic stability of the closed-loop system provided the linear time-delayed system is controllable and observable. The proposed event-triggered approach relaxed the need for continuous availability of state vector and proven to be zeno-free. Finally, the OAC using IRL neural network based control of uncertain nonlinear time-delay systems with input and state delays is investigated. An identifier is proposed for nonlinear time-delay systems to approximate the system dynamics and relax the need for the control coefficient matrix in generating the control policy. Lyapunov analysis is utilized to design the optimal adaptive controller, derive parameter/weight tuning law and verify stability of the closed-loop system”--Abstract, page iv
    corecore