3,927 research outputs found

    Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow

    Full text link
    We present a computational framework for the simulation of blood flow with fully resolved red blood cells (RBCs) using a modular approach that consists of a lattice Boltzmann solver for the blood plasma, a novel finite element based solver for the deformable bodies and an immersed boundary method for the fluid-solid interaction. For the RBCs, we propose a nodal projective FEM (npFEM) solver which has theoretical advantages over the more commonly used mass-spring systems (mesoscopic modeling), such as an unconditional stability, versatile material expressivity, and one set of parameters to fully describe the behavior of the body at any mesh resolution. At the same time, the method is substantially faster than other FEM solvers proposed in this field, and has an efficiency that is comparable to the one of mesoscopic models. At its core, the solver uses specially defined potential energies, and builds upon them a fast iterative procedure based on quasi-Newton techniques. For a known material, our solver has only one free parameter that demands tuning, related to the body viscoelasticity. In contrast, state-of-the-art solvers for deformable bodies have more free parameters, and the calibration of the models demands special assumptions regarding the mesh topology, which restrict their generality and mesh independence. We propose as well a modification to the potential energy proposed by Skalak et al. 1973 for the red blood cell membrane, which enhances the strain hardening behavior at higher deformations. Our viscoelastic model for the red blood cell, while simple enough and applicable to any kind of solver as a post-convergence step, can capture accurately the characteristic recovery time and tank-treading frequencies. The framework is validated using experimental data, and it proves to be scalable for multiple deformable bodies

    Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows

    Get PDF
    In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids

    Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation

    Get PDF
    In this paper, a three-field finite element stabilized formulation for the incompressible viscoelastic fluid flow problem is tested numerically. Starting from a residual based formulation, a non-residual based one is designed, the benefits of which are highlighted in this work. Both formulations allow one to deal with the convective nature of the problem and to use equal interpolation for the problem unknowns View the MathML sources-u-p (deviatoric stress, velocity and pressure). Additionally, some results from the numerical analysis of the formulation are stated. Numerical examples are presented to show the robustness of the method, which include the classical 4: 1 planar contraction problem and the flow over a confined cylinder case, as well as a two-fluid formulation for the planar jet buckling problem.Peer ReviewedPostprint (author's final draft

    Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part II: A linear scheme

    Get PDF
    This is the second part of our error analysis of the stabilized Lagrange-Galerkin scheme applied to the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which leads to an efficient computation with a small number of degrees of freedom especially in three space dimensions. In this paper, Part II, we apply a semi-implicit time discretization which yields the linear scheme. We concentrate on the diffusive viscoelastic model, i.e. in the constitutive equation for time evolution of the conformation tensor a diffusive effect is included. Under mild stability conditions we obtain error estimates with the optimal convergence order for the velocity, pressure and conformation tensor in two and three space dimensions. The theoretical convergence orders are confirmed by numerical experiments.Comment: See arXiv:1603.01339 for Part I: a nonlinear schem

    The fully-implicit log-conformation formulation and its application to three-dimensional flows

    Full text link
    The stable and efficient numerical simulation of viscoelastic flows has been a constant struggle due to the High Weissenberg Number Problem. While the stability for macroscopic descriptions could be greatly enhanced by the log-conformation method as proposed by Fattal and Kupferman, the application of the efficient Newton-Raphson algorithm to the full monolithic system of governing equations, consisting of the log-conformation equations and the Navier-Stokes equations, has always posed a problem. In particular, it is the formulation of the constitutive equations by means of the spectral decomposition that hinders the application of further analytical tools. Therefore, up to now, a fully monolithic approach could only be achieved in two dimensions, as, e.g., recently shown in [P. Knechtges, M. Behr, S. Elgeti, Fully-implicit log-conformation formulation of constitutive laws, J. Non-Newtonian Fluid Mech. 214 (2014) 78-87]. The aim of this paper is to find a generalization of the previously made considerations to three dimensions, such that a monolithic Newton-Raphson solver based on the log-conformation formulation can be implemented also in this case. The underlying idea is analogous to the two-dimensional case, to replace the eigenvalue decomposition in the constitutive equation by an analytically more "well-behaved" term and to rely on the eigenvalue decomposition only for the actual computation. Furthermore, in order to demonstrate the practicality of the proposed method, numerical results of the newly derived formulation are presented in the case of the sedimenting sphere and ellipsoid benchmarks for the Oldroyd-B and Giesekus models. It is found that the expected quadratic convergence of Newton's method can be achieved.Comment: 21 pages, 9 figure

    Free-energy-dissipative schemes for the Oldroyd-B model

    Get PDF
    In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman, which have been reported to be numerically more stable than discretizations of the usual formulation in some benchmark problems. Our analysis gives some tracks to understand these numerical observations
    corecore