4 research outputs found

    Stability and Control of Power Systems using Vector Lyapunov Functions and Sum-of-Squares Methods

    Full text link
    Recently sum-of-squares (SOS) based methods have been used for the stability analysis and control synthesis of polynomial dynamical systems. This analysis framework was also extended to non-polynomial dynamical systems, including power systems, using an algebraic reformulation technique that recasts the system's dynamics into a set of polynomial differential algebraic equations. Nevertheless, for large scale dynamical systems this method becomes inapplicable due to its computational complexity. For this reason we develop a subsystem based stability analysis approach using vector Lyapunov functions and introduce a parallel and scalable algorithm to infer the stability of the interconnected system with the help of the subsystem Lyapunov functions. Furthermore, we design adaptive and distributed control laws that guarantee asymptotic stability under a given external disturbance. Finally, we apply this algorithm for the stability analysis and control synthesis of a network preserving power system.Comment: to appear at the 14th annual European Control Conferenc

    Estimating Relevant Portion of Stability Region using Lyapunov Approach and Sum of Squares

    Full text link
    Traditional Lyapunov based transient stability assessment approaches focus on identifying the stability region (SR) of the equilibrium point under study. When trying to estimate this region using Lyapunov functions, the shape of the final estimate is often limited by the degree of the function chosen, a limitation that results in conservativeness in the estimate of the SR. More conservative the estimate is in a particular region of state space, smaller is the estimate of the critical clearing time for disturbances that drive the system towards that region. In order to reduce this conservativeness, we propose a methodology that uses the disturbance trajectory data to skew the shape of the final Lyapunov based SR estimate. We exploit the advances made in the theory of sum of squares decomposition to algorithmically estimate this region. The effectiveness of this technique is demonstrated on a power systems classical model.Comment: Under review as a conference paper at IEEE PESGM 201
    corecore