8,113 research outputs found

    Growth Series and Random Walks on Some Hyperbolic Graphs

    Full text link
    Consider the tesselation of the hyperbolic plane by m-gons, l per vertex. In its 1-skeleton, we compute the growth series of vertices, geodesics, tuples of geodesics with common extremities. We also introduce and enumerate "holly trees", a family of reduced loops in these graphs. We then apply Grigorchuk's result relating cogrowth and random walks to obtain lower estimates on the spectral radius of the Markov operator associated with a symmetric random walk on these graphs.Comment: 21 pages. to appear in monash. mat

    Scattering theory and discrete-time quantum walks

    Full text link
    We study quantum walks on general graphs from the point of view of scattering theory. For a general finite graph we choose two vertices and attach one half line to each. We are interested in walks that proceed from one half line, through the graph, to the other. The particle propagates freely on the half lines but is scattered at each vertex in the original graph. The probability of starting on one line and reaching the other after n steps can be expressed in terms of the transmission amplitude for the graph. An example is presented.Comment: 7 pages, Latex, replaced with published versio

    Quantum walks based on an interferometric analogy

    Get PDF
    There are presently two models for quantum walks on graphs. The "coined" walk uses discrete time steps, and contains, besides the particle making the walk, a second quantum system, the coin, that determines the direction in which the particle will move. The continuous walk operates with continuous time. Here a third model for a quantum walk is proposed, which is based on an analogy to optical interferometers. It is a discrete-time model, and the unitary operator that advances the walk one step depends only on the local structure of the graph on which the walk is taking place. No quantum coin is introduced. This type of walk allows us to introduce elements, such as phase shifters, that have no counterpart in classical random walks. Walks on the line and cycle are discussed in some detail, and a probability current for these walks is introduced. The relation to the coined quantum walk is also discussed. The paper concludes by showing how to define these walks for a general graph.Comment: Latex,18 pages, 5 figure

    Quantum and classical localisation and the Manhattan lattice

    Full text link
    We consider a network model, embedded on the Manhattan lattice, of a quantum localisation problem belonging to symmetry class C. This arises in the context of quasiparticle dynamics in disordered spin-singlet superconductors which are invariant under spin rotations but not under time reversal. A mapping exists between problems belonging to this symmetry class and certain classical random walks which are self-avoiding and have attractive interactions; we exploit this equivalence, using a study of the classical random walks to gain information about the corresponding quantum problem. In a field-theoretic approach, we show that the interactions may flow to one of two possible strong coupling regimes separated by a transition: however, using Monte Carlo simulations we show that the walks are in fact always compact two-dimensional objects with a well-defined one-dimensional surface, indicating that the corresponding quantum system is localised.Comment: 11 pages, 8 figure
    • …
    corecore