7,895 research outputs found

    Signal processing and machine learning techniques for automatic image-based facial expression recognition

    Get PDF
    PhD ThesisIn this thesis novel signal processing and machine learning techniques are proposed and evaluated for automatic image-based facial expression recognition, which are aimed to progress towards real world operation. A thorough evaluation of the performance of certain image-based expression recognition techniques is performed using a posed database and for the rst time three progressively more challenging spontaneous databases. These methods exploit the principles of sparse representation theory with identity-independent expression recognition using di erence images. The second contribution exploits a low complexity method to extract geometric features from facial expression images. The misalignment problem of the training images is solved and the performance of both geometric and appearance features is assessed on the same three spontaneous databases. A deep network framework that contains auto-encoders is used to form an improved classi er. The nal work focuses upon enhancing the expression recognition performance by the selection and fusion of di erent types of features comprising geometric features and two sorts of appearance features. This provides a rich feature vector by which the best representation of the spontaneous facial features is obtained. Subsequently, the computational complexity is reduced by maintaining important location information by concentrating on the crucial roles of the facial regions as the basic processing instead of the entire face, where the local binary patterns and local phase quantization features are extracted automatically by means of detecting two important regions of the face. Next, an automatic method for splitting the training e ort of the initial network into several networks and multi-classi ers namely a surface network and bottom network are used to solve the problem and to enhance the performance. All methods are evaluated in a MATLAB framework and confusion matrices and average facial expression recognition accuracy are used as the performance metrics.Ministry of Higher Education and Scienti c Research in Iraq (MOHESR

    Loughborough University Spontaneous Expression Database and baseline results for automatic emotion recognition

    Get PDF
    The study of facial expressions in humans dates back to the 19th century and the study of the emotions that these facial expressions portray dates back even further. It is a natural part of non-verbal communication for humans to pass across messages using facial expressions either consciously or subconsciously, it is also routine for other humans to recognize these facial expressions and understand or deduce the underlying emotions which they represent. Over two decades ago and following technological advances, particularly in the area of image processing, research began into the use of machines for the recognition of facial expressions from images with the aim of inferring the corresponding emotion. Given a previously unknown test sample, the supervised learning problem is to accurately determine the facial expression class to which the test sample belongs using the knowledge of the known class memberships of each image from a set of training images. The solution to this problem building an effective classifier to recognize the facial expression is hinged on the availability of representative training data. To date, much of the research in the area of Facial Expression Recognition (FER) is still based on posed (acted) facial expression databases, which are often exaggerated and therefore not representative of real life affective displays, as such there is a need for more publically accessible spontaneous databases that are well labelled. This thesis therefore reports on the development of the newly collected Loughborough University Spontaneous Expression Database (LUSED); designed to bolster the development of new recognition systems and to provide a benchmark for researchers to compare results with more natural expression classes than most existing databases. To collect the database, an experiment was set up where volunteers were discretely videotaped while they watched a selection of emotion inducing video clips. The utility of the new LUSED dataset is validated using both traditional and more recent pattern recognition techniques; (1) baseline results are presented using the combination of Principal Component Analysis (PCA), Fisher Linear Discriminant Analysis (FLDA) and their kernel variants Kernel Principal Component Analysis (KPCA), Kernel Fisher Discriminant Analysis (KFDA) with a Nearest Neighbour-based classifier. These results are compared to the performance of an existing natural expression database Natural Visible and Infrared Expression (NVIE) database. A scheme for the recognition of encrypted facial expression images is also presented. (2) Benchmark results are presented by combining PCA, FLDA, KPCA and KFDA with a Sparse Representation-based Classifier (SRC). A maximum accuracy of 68% was obtained recognizing five expression classes, which is comparatively better than the known maximum for a natural database; around 70% (from recognizing only three classes) obtained from NVIE

    Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis \& Application

    Full text link
    Spontaneous subtle emotions are expressed through micro-expressions, which are tiny, sudden and short-lived dynamics of facial muscles; thus poses a great challenge for visual recognition. The abrupt but significant dynamics for the recognition task are temporally sparse while the rest, irrelevant dynamics, are temporally redundant. In this work, we analyze and enforce sparsity constrains to learn significant temporal and spectral structures while eliminate irrelevant facial dynamics of micro-expressions, which would ease the challenge in the visual recognition of spontaneous subtle emotions. The hypothesis is confirmed through experimental results of automatic spontaneous subtle emotion recognition with several sparsity levels on CASME II and SMIC, the only two publicly available spontaneous subtle emotion databases. The overall performances of the automatic subtle emotion recognition are boosted when only significant dynamics are preserved from the original sequences.Comment: IEEE Transaction of Affective Computing (2016

    Island Loss for Learning Discriminative Features in Facial Expression Recognition

    Full text link
    Over the past few years, Convolutional Neural Networks (CNNs) have shown promise on facial expression recognition. However, the performance degrades dramatically under real-world settings due to variations introduced by subtle facial appearance changes, head pose variations, illumination changes, and occlusions. In this paper, a novel island loss is proposed to enhance the discriminative power of the deeply learned features. Specifically, the IL is designed to reduce the intra-class variations while enlarging the inter-class differences simultaneously. Experimental results on four benchmark expression databases have demonstrated that the CNN with the proposed island loss (IL-CNN) outperforms the baseline CNN models with either traditional softmax loss or the center loss and achieves comparable or better performance compared with the state-of-the-art methods for facial expression recognition.Comment: 8 pages, 3 figure

    Less is More: Micro-expression Recognition from Video using Apex Frame

    Full text link
    Despite recent interest and advances in facial micro-expression research, there is still plenty room for improvement in terms of micro-expression recognition. Conventional feature extraction approaches for micro-expression video consider either the whole video sequence or a part of it, for representation. However, with the high-speed video capture of micro-expressions (100-200 fps), are all frames necessary to provide a sufficiently meaningful representation? Is the luxury of data a bane to accurate recognition? A novel proposition is presented in this paper, whereby we utilize only two images per video: the apex frame and the onset frame. The apex frame of a video contains the highest intensity of expression changes among all frames, while the onset is the perfect choice of a reference frame with neutral expression. A new feature extractor, Bi-Weighted Oriented Optical Flow (Bi-WOOF) is proposed to encode essential expressiveness of the apex frame. We evaluated the proposed method on five micro-expression databases: CAS(ME)2^2, CASME II, SMIC-HS, SMIC-NIR and SMIC-VIS. Our experiments lend credence to our hypothesis, with our proposed technique achieving a state-of-the-art F1-score recognition performance of 61% and 62% in the high frame rate CASME II and SMIC-HS databases respectively.Comment: 14 pages double-column, author affiliations updated, acknowledgment of grant support adde

    Facial Expression Recognition from World Wild Web

    Full text link
    Recognizing facial expression in a wild setting has remained a challenging task in computer vision. The World Wide Web is a good source of facial images which most of them are captured in uncontrolled conditions. In fact, the Internet is a Word Wild Web of facial images with expressions. This paper presents the results of a new study on collecting, annotating, and analyzing wild facial expressions from the web. Three search engines were queried using 1250 emotion related keywords in six different languages and the retrieved images were mapped by two annotators to six basic expressions and neutral. Deep neural networks and noise modeling were used in three different training scenarios to find how accurately facial expressions can be recognized when trained on noisy images collected from the web using query terms (e.g. happy face, laughing man, etc)? The results of our experiments show that deep neural networks can recognize wild facial expressions with an accuracy of 82.12%
    • …
    corecore