7,667 research outputs found

    Optimal prediction for moment models: Crescendo diffusion and reordered equations

    Full text link
    A direct numerical solution of the radiative transfer equation or any kinetic equation is typically expensive, since the radiative intensity depends on time, space and direction. An expansion in the direction variables yields an equivalent system of infinitely many moments. A fundamental problem is how to truncate the system. Various closures have been presented in the literature. We want to study moment closure generally within the framework of optimal prediction, a strategy to approximate the mean solution of a large system by a smaller system, for radiation moment systems. We apply this strategy to radiative transfer and show that several closures can be re-derived within this framework, e.g. PNP_N, diffusion, and diffusion correction closures. In addition, the formalism gives rise to new parabolic systems, the reordered PNP_N equations, that are similar to the simplified PNP_N equations. Furthermore, we propose a modification to existing closures. Although simple and with no extra cost, this newly derived crescendo diffusion yields better approximations in numerical tests.Comment: Revised version: 17 pages, 6 figures, presented at Workshop on Moment Methods in Kinetic Gas Theory, ETH Zurich, 2008 2 figures added, minor correction

    A class of Galerkin schemes for time-dependent radiative transfer

    Get PDF
    The numerical solution of time-dependent radiative transfer problems is challenging, both, due to the high dimension as well as the anisotropic structure of the underlying integro-partial differential equation. In this paper we propose a general framework for designing numerical methods for time-dependent radiative transfer based on a Galerkin discretization in space and angle combined with appropriate time stepping schemes. This allows us to systematically incorporate boundary conditions and to preserve basic properties like exponential stability and decay to equilibrium also on the discrete level. We present the basic a-priori error analysis and provide abstract error estimates that cover a wide class of methods. The starting point for our considerations is to rewrite the radiative transfer problem as a system of evolution equations which has a similar structure like first order hyperbolic systems in acoustics or electrodynamics. This analogy allows us to generalize the main arguments of the numerical analysis for such applications to the radiative transfer problem under investigation. We also discuss a particular discretization scheme based on a truncated spherical harmonic expansion in angle, a finite element discretization in space, and the implicit Euler method in time. The performance of the resulting mixed PN-finite element time stepping scheme is demonstrated by computational results

    StaRMAP - A second order staggered grid method for spherical harmonics moment equations of radiative transfer

    Full text link
    We present a simple method to solve spherical harmonics moment systems, such as the the time-dependent PNP_N and SPNSP_N equations, of radiative transfer. The method, which works for arbitrary moment order NN, makes use of the specific coupling between the moments in the PNP_N equations. This coupling naturally induces staggered grids in space and time, which in turn give rise to a canonical, second-order accurate finite difference scheme. While the scheme does not possess TVD or realizability limiters, its simplicity allows for a very efficient implementation in Matlab. We present several test cases, some of which demonstrate that the code solves problems with ten million degrees of freedom in space, angle, and time within a few seconds. The code for the numerical scheme, called StaRMAP (Staggered grid Radiation Moment Approximation), along with files for all presented test cases, can be downloaded so that all results can be reproduced by the reader.Comment: 28 pages, 7 figures; StaRMAP code available at http://www.math.temple.edu/~seibold/research/starma

    A Two-moment Radiation Hydrodynamics Module in Athena Using a Time-explicit Godunov Method

    Full text link
    We describe a module for the Athena code that solves the gray equations of radiation hydrodynamics (RHD), based on the first two moments of the radiative transfer equation. We use a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We adopt the M1 closure relation and include all leading source terms. We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. Our code is dimensionally unsplit in one, two, and three space dimensions and is parallelized using MPI. The streaming and diffusion limits are well-described by the M1 closure model, and our implementation shows excellent behavior for a problem with a concentrated radiation source containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal. We present an analysis of the dispersion relation of RHD linear waves highlighting the conditions of applicability for the RSLA. To demonstrate the accuracy of our method, we utilize a suite of radiation and RHD tests covering a broad range of regimes, including RHD waves, shocks, and equilibria, which show second-order convergence in most cases. As an application, we investigate radiation-driven ejection of a dusty, optically thick shell in the interstellar medium (ISM). Finally, we compare the timing of our method with other well-known iterative schemes for the RHD equations. Our code implementation, Hyperion, is suitable for a wide variety of astrophysical applications and will be made freely available on the Web.Comment: 30 pages, 29 figures, accepted for publication in ApJ

    Numerical Solution of the Expanding Stellar Atmosphere Problem

    Get PDF
    In this paper we discuss numerical methods and algorithms for the solution of NLTE stellar atmosphere problems involving expanding atmospheres, e.g., found in novae, supernovae and stellar winds. We show how a scheme of nested iterations can be used to reduce the high dimension of the problem to a number of problems with smaller dimensions. As examples of these sub-problems, we discuss the numerical solution of the radiative transfer equation for relativistically expanding media with spherical symmetry, the solution of the multi-level non-LTE statistical equilibrium problem for extremely large model atoms, and our temperature correction procedure. Although modern iteration schemes are very efficient, parallel algorithms are essential in making large scale calculations feasible, therefore we discuss some parallelization schemes that we have developed.Comment: JCAM, in press. 28 pages, also available at ftp://calvin.physast.uga.edu:/pub/preprints/CompAstro.ps.g

    Second-order mixed-moment model with differentiable ansatz function in slab geometry

    Full text link
    We study differentiable mixed-moment models (full zeroth and first moment, half higher moments) for a Fokker-Planck equation in one space dimension. Mixed-moment minimum-entropy models are known to overcome the zero net-flux problem of full-moment minimum entropy MNM_N models. Realizability theory for these modification of mixed moments is derived for second order. Numerical tests are performed with a kinetic first-order finite volume scheme and compared with MNM_N, classical MMNMM_N and a PNP_N reference scheme.Comment: arXiv admin note: text overlap with arXiv:1611.01314, arXiv:1511.0271
    • …
    corecore