14 research outputs found

    Sorting Pattern-Avoiding Permutations via 0-1 Matrices Forbidding Product Patterns

    Full text link
    We consider the problem of comparison-sorting an nn-permutation SS that avoids some kk-permutation π\pi. Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak prove that when SS is sorted by inserting the elements into the GreedyFuture binary search tree, the running time is linear in the extremal function Ex(Pπ⊗hat,n)\mathrm{Ex}(P_\pi\otimes \text{hat},n). This is the maximum number of 1s in an n×nn\times n 0-1 matrix avoiding Pπ⊗hatP_\pi \otimes \text{hat}, where PπP_\pi is the k×kk\times k permutation matrix of π\pi, ⊗\otimes the Kronecker product, and hat=(∙∙∙)\text{hat} = \left(\begin{array}{ccc}&\bullet&\\\bullet&&\bullet\end{array}\right). The same time bound can be achieved by sorting SS with Kozma and Saranurak's SmoothHeap. In this paper we give nearly tight upper and lower bounds on the density of Pπ⊗hatP_\pi\otimes\text{hat}-free matrices in terms of the inverse-Ackermann function α(n)\alpha(n). \mathrm{Ex}(P_\pi\otimes \text{hat},n) = \left\{\begin{array}{ll} \Omega(n\cdot 2^{\alpha(n)}), & \mbox{for most $\pi$,}\\ O(n\cdot 2^{O(k^2)+(1+o(1))\alpha(n)}), & \mbox{for all $\pi$.} \end{array}\right. As a consequence, sorting π\pi-free sequences can be performed in O(n2(1+o(1))α(n))O(n2^{(1+o(1))\alpha(n)}) time. For many corollaries of the dynamic optimality conjecture, the best analysis uses forbidden 0-1 matrix theory. Our analysis may be useful in analyzing other classes of access sequences on binary search trees

    Improved Pattern-Avoidance Bounds for Greedy BSTs via Matrix Decomposition

    Full text link
    Greedy BST (or simply Greedy) is an online self-adjusting binary search tree defined in the geometric view ([Lucas, 1988; Munro, 2000; Demaine, Harmon, Iacono, Kane, Patrascu, SODA 2009). Along with Splay trees (Sleator, Tarjan 1985), Greedy is considered the most promising candidate for being dynamically optimal, i.e., starting with any initial tree, their access costs on any sequence is conjectured to be within O(1)O(1) factor of the offline optimal. However, in the past four decades, the question has remained elusive even for highly restricted input. In this paper, we prove new bounds on the cost of Greedy in the ''pattern avoidance'' regime. Our new results include: The (preorder) traversal conjecture for Greedy holds up to a factor of O(2α(n))O(2^{\alpha(n)}), improving upon the bound of 2α(n)O(1)2^{\alpha(n)^{O(1)}} in (Chalermsook et al., FOCS 2015). This is the best known bound obtained by any online BSTs. We settle the postorder traversal conjecture for Greedy. The deque conjecture for Greedy holds up to a factor of O(α(n))O(\alpha(n)), improving upon the bound 2O(α(n))2^{O(\alpha(n))} in (Chalermsook, et al., WADS 2015). The split conjecture holds for Greedy up to a factor of O(2α(n))O(2^{\alpha(n)}). Key to all these results is to partition (based on the input structures) the execution log of Greedy into several simpler-to-analyze subsets for which classical forbidden submatrix bounds can be leveraged. Finally, we show the applicability of this technique to handle a class of increasingly complex pattern-avoiding input sequences, called kk-increasing sequences. As a bonus, we discover a new class of permutation matrices whose extremal bounds are polynomially bounded. This gives a partial progress on an open question by Jacob Fox (2013).Comment: Accepted to SODA 202

    Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations

    Full text link
    Let lambda_s(n) denote the maximum length of a Davenport-Schinzel sequence of order s on n symbols. For s=3 it is known that lambda_3(n) = Theta(n alpha(n)) (Hart and Sharir, 1986). For general s>=4 there are almost-tight upper and lower bounds, both of the form n * 2^poly(alpha(n)) (Agarwal, Sharir, and Shor, 1989). Our first result is an improvement of the upper-bound technique of Agarwal et al. We obtain improved upper bounds for s>=6, which are tight for even s up to lower-order terms in the exponent. More importantly, we also present a new technique for deriving upper bounds for lambda_s(n). With this new technique we: (1) re-derive the upper bound of lambda_3(n) <= 2n alpha(n) + O(n sqrt alpha(n)) (first shown by Klazar, 1999); (2) re-derive our own new upper bounds for general s; and (3) obtain improved upper bounds for the generalized Davenport-Schinzel sequences considered by Adamec, Klazar, and Valtr (1992). Regarding lower bounds, we show that lambda_3(n) >= 2n alpha(n) - O(n), and therefore, the coefficient 2 is tight. We also present a simpler version of the construction of Agarwal, Sharir, and Shor that achieves the known lower bounds for even s>=4.Comment: To appear in Journal of the ACM. 48 pages, 3 figure

    On Dynamic Optimality for Binary Search Trees

    Full text link
    Does there exist O(1)-competitive (self-adjusting) binary search tree (BST) algorithms? This is a well-studied problem. A simple offline BST algorithm GreedyFuture was proposed independently by Lucas and Munro, and they conjectured it to be O(1)-competitive. Recently, Demaine et al. gave a geometric view of the BST problem. This view allowed them to give an online algorithm GreedyArb with the same cost as GreedyFuture. However, no o(n)-competitive ratio was known for GreedyArb. In this paper we make progress towards proving O(1)-competitive ratio for GreedyArb by showing that it is O(\log n)-competitive

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form a⋯b⋯a⋯b⋯a \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s≤3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs−1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201
    corecore