37,594 research outputs found
Biomechanical Tolerance of Whole Lumbar Spines in Straightened Posture Subjected to Axial Acceleration
Quantification of biomechanical tolerance is necessary for injury prediction and protection of vehicular occupants. This study experimentally quantified lumbar spine axial tolerance during accelerative environments simulating a variety of military and civilian scenarios. Intact human lumbar spines (T12‐L5) were dynamically loaded using a custom‐built drop tower. Twenty‐three specimens were tested at sub‐failure and failure levels consisting of peak axial forces between 2.6 and 7.9 kN and corresponding peak accelerations between 7 and 57 g. Military aircraft ejection and helicopter crashes fall within these high axial acceleration ranges. Testing was stopped following injury detection. Both peak force and acceleration were significant (p \u3c 0.0001) injury predictors. Injury probability curves using parametric survival analysis were created for peak acceleration and peak force. Fifty‐percent probability of injury (95%CI) for force and acceleration were 4.5 (3.9–5.2 kN), and 16 (13–19 g). A majority of injuries affected the L1 spinal level. Peak axial forces and accelerations were greater for specimens that sustained multiple injuries or injuries at L2–L5 spinal levels. In general, force‐based tolerance was consistent with previous shorter‐segment lumbar spine testing (3–5 vertebrae), although studies incorporating isolated vertebral bodies reported higher tolerance attributable to a different injury mechanism involving structural failure of the cortical shell. This study identified novel outcomes with regard to injury patterns, wherein more violent exposures produced more injuries in the caudal lumbar spine. This caudal migration was likely attributable to increased injury tolerance at lower lumbar spinal levels and a faster inertial mass recruitment process for high rate load application. Published 2017. This article is a U.S. Government work and is in the public domain in the USA
Recommended from our members
ISSLS PRIZE IN BIOENGINEERING SCIENCE 2019: biomechanical changes in dynamic sagittal balance and lower limb compensatory strategies following realignment surgery in adult spinal deformity patients.
Study designA longitudinal cohort study.ObjectiveTo define a set of objective biomechanical metrics that are representative of adult spinal deformity (ASD) post-surgical outcomes and that may forecast post-surgical mechanical complications. Current outcomes for ASD surgical planning and post-surgical assessment are limited to static radiographic alignment and patient-reported questionnaires. Little is known about the compensatory biomechanical strategies for stabilizing sagittal balance during functional movements in ASD patients.MethodsWe collected in-clinic motion data from 15 ASD patients and 10 controls during an unassisted sit-to-stand (STS) functional maneuver. Joint motions were measured using noninvasive 3D depth mapping sensor technology. Mathematical methods were used to attain high-fidelity joint-position tracking for biomechanical modeling. This approach provided reliable measurements for biomechanical behaviors at the spine, hip, and knee. These included peak sagittal vertical axis (SVA) over the course of the STS, as well as forces and muscular moments at various joints. We compared changes in dynamic sagittal balance (DSB) metrics between pre- and post-surgery and then separately compared pre- and post-surgical data to controls.ResultsStandard radiographic and patient-reported outcomes significantly improved following realignment surgery. From the DSB biomechanical metrics, peak SVA and biomechanical loads and muscular forces on the lower lumbar spine significantly reduced following surgery (- 19 to - 30%, all p < 0.05). In addition, as SVA improved, hip moments decreased (- 28 to - 65%, all p < 0.05) and knee moments increased (+ 7 to + 28%, p < 0.05), indicating changes in lower limb compensatory strategies. After surgery, DSB data approached values from the controls, with some post-surgical metrics becoming statistically equivalent to controls.ConclusionsLongitudinal changes in DSB following successful multi-level spinal realignment indicate reduced forces on the lower lumbar spine along with altered lower limb dynamics matching that of controls. Inadequate improvement in DSB may indicate increased risk of post-surgical mechanical failure. These slides can be retrieved under Electronic Supplementary Material
The effects of bag style on muscle activity of the trapezius, erector spinae and latissimus dorsi during walking in female university students
© by The Author(s). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Back pain is common in adolescents which has been associated with carrying a bag. However, there is little research examining the effects of bag style in female adolescents. The aim of the study was to investigate the effects of different bag conditions on muscle activity of the trapezius, erector spinae and latissimus dorsi muscles in female university students during walking. Twelve female university students walked on a treadmill for 5 minutes at 1.1 m/s during five conditions; control, 1 strapped rucksack, 2 strapped rucksack, ipsilateral shoulder strap and contralateral shoulder strap, each containing 10% bodyweight. Electromyography for the trapezius, erector spinae and latissimus dorsi was recorded for the last 30 s of each condition. Two-way ANOVA and paired t-tests were used to identify differences between right and left muscles and between bag conditions. Results showed that muscle activity of the left trapezius was significantly higher than the right trapezius during the 1 strap rucksack condition. For the left trapezius, the 2 strapped rucksack and the control condition had significantly lower muscle activity compared to the 1 strapped rucksack and the ipsilateral shoulder strap. For the left erector spinae muscle, there was significantly greater muscle activity when wearing the contralateral shoulder strap compared to the control. For the right erector spinae, significantly lower muscle activity was observed when wearing the 2 strapped rucksack compared to the ipsilateral shoulder strap and contralateral shoulder strap. There were no significant differences in muscle activity of the latissimus dorsi muscles between any of the bag conditions. These findings suggest that a two strapped rucksack should be used when carrying loads to reduce spinal muscle activity which may, in turn, reduce reports of back pain in female adolescentPeer reviewedFinal Published versio
Static loads on the lower back for two modalities of the isometric smith squat
Introduction: The squat is one of the most effective exercises in athletic training. However, there is a scarcity of research that reports the muscular and joint loads in the lumbar region incurred when performing the high bar and the low bar isometric squat modalities in a Smith machine. Therefore, this study aims to determine the muscle force of the lower back extensors, and the compressive (Rc) and shear (Rs) forces at the lumbosacral joint for the one repetition maximum (1RM) high bar and low bar isometric parallel-depth Smith squats.
Methods: Eight healthy male well-trained 400-m sprinters participated in the study. The athletes performed the two modalities of the isometric squat on a 7° backward-inclined Smith machine using a mean ± SD 1RM external resistance of 100.3 ± 7.2 kg. During the squat, the participants paused for 2-3 s at the bottom of the squat, corresponding to a position in which the thighs are parallel to the ground. This was, therefore, considered a static position for the calculation of isometric muscle forces and joint loads using static mechanical analysis. Moment arms, and joint and segmental angles were calculated from video images of the squatting performance. Internal forces were computed using a geometrical model of the trunk and lower limb.
Results: Spinal extensor muscular forces and lumbo-sacral joint forces were higher when using the low bar technique; with the exception of Rs which was approximately equal. The mean Rc were 10.2 body weights (BW) or 8,014 N (high bar) and 11.1 BW or 8,729 N (low bar).
Discussion: The low bar technique yields higher Rc and may therefore be avoided in the rehabilitation of spinal injuries. Increased bone mineral density and well-developed trunk musculature due to long term squat training can provide protection against passive spinal tissue failure. Therefore, the Rc found for the 1RM isometric parallel-depth Smith squat do not appear excessive for healthy well-trained athletes. The presence of Rs at the lumbo-sacral joint in both squat modalities suggests potential for damage to the intervertebral disc. The findings provide an in-depth understanding of the two squat modalities in isometric conditions for the prevention of lower back injury and the design of rehabilitation programs
Two-dimensional posture evaluation in Parkinson’s disease: effect of loads on the spinal angle during gait
Parkinson’s Disease patients present diminished coordination caused by neural degeneration. This leads to large motor difficulties during gait such as balance loss and pronounced forward inclination of the upper body. This work assessed the spinal sagittal plane angle alterations in two groups: six parkinsonian patients and six control healthy subjects. This parameter was analyzed during gait under three conditions: without external loads and with external loads applied either on the chest or on the lower back area. Results were statistically compared by means of t-test of paired samples in both groups. For patients, a significant effect was found when loads were applied on the chest. On the other hand, healthy subjects showed no significant differences in either case.Fil: Celoria, Paula. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Nanni, Federico. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pastore, Flavia. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pulenta, Sebastian. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Tajerian, Matias. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pantazis, Lucio José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Moscoso Vásquez, Hilda Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Cerquetti, Daniel. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Merello, Marcelo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Inertial Load Compensation by a Model Spinal Circuit During Single Joint Movement
Office of Naval Research (N00014-92-J-1309); CONACYT (Mexico) (63462
Friction in metal-on-metal total disc arthroplasty: effect of ball radius
Total Disc Arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. There are different designs of prosthetic discs, but one of the most common is a ball-and-socket combination. Contact between the bearing surfaces can result in high frictional torque, which can then result in wear and implant loosening. This study was designed to determine the effects of ball radius on friction. Generic models of metal-on-metal TDA were manufactured with ball radii of 10, 12, 14 and 16 mm, with a radial clearance of 0.015 mm. A simulator was used to test each sample in flexion-extension, lateral bending and axial rotation at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 Hz under loads of 50, 600, 1200 and 2000 N, in new born calf serum. Frictional torque was measured and Stribeck curves were plotted to illustrate the lubrication regime in each case. It was observed that implants with a smaller ball radius showed lower friction and showed boundary and mixed lubrication regimes, whereas implants with larger ball radius showed boundary lubrication only. This study suggests designing metal-on-metal TDAs with ball radius of 10 or 12 mm, in order to reduce wear and implant loosening
Modeling the effect of variation in sagittal curvature on the force required to produce a follower load in the lumbar spine
Peer reviewedPreprin
Experimentally based numerical models and numerical simulation with parameter identification of human lumbar FSUs in traction
Numerical simulation of the behaviour of human lumbar spine segments, moreover, parameter-identification of the component organs of human lumbar FSUs are presented in
traction therapies, by using FEM analysis. First, a simple 2D model, than a refined 2D model, and finally a refined 3D model were applied for modeling lumbar FSUs. For global numerical simulation of traction therapies the material constants of component organs have been obtained from the international literature. For local parameter identification
of the component organs, an interval of the possible material moduli has been considered for each organ, and the possible combinations of real moduli were obtained,
controlling the process by the measured global deformations. In this way, the efficiency of conservative traction therapies can be improved by offering new experimental tensile material parameters for the international spine research
Effects of sex, age, body height and body weight on spinal loads: sensitivity analyses in a subject-specific trunk musculoskeletal model.
Subject-specific parameters influence spinal loads and the risk of back disorders but their relative effects are not well understood. The objective of this study is to investigate the effects of changes in age (35-60 years), sex (male, female), body height (BH: 150-190 cm) and body weight (BW: 50-120 kg) on spinal loads in a full factorial simulation using a personalized (spine kinematics, geometry, musculature and passive properties) kinematics driven musculoskeletal trunk finite element model. Segmental weight distribution (magnitude and location along the trunk) was estimated by a novel technique to accurately represent obesity. Five symmetric sagittal loading conditions were considered, and main effect plots and analyses of variance were employed to identify influential parameters. In all 5 tasks simulated, BW (98.9% in compression and 96.1% in shear) had the greatest effect on spinal loads at the L4-L5 and L5-S1 levels followed by sex (0.7% in compression and 2.1% in shear), BH (0.4% in compression and 1.5% in shear) and finally age (<5.4%). At identical BH and BW, spinal loads in females were slightly greater than those in males by ~4.7% in compression and ~8.7% in shear. In tasks with no loads in hands, BW-normalized spinal loads further increased with BW highlighting the exponential increase in spinal loads with BW that indicates the greater risk of back disorders especially in obese individuals. Uneven distribution of weight in obese subjects, with more BW placed at the lower trunk, further (though slightly <7.5%) increased spinal loads.This work was supported by the institut de recherche Robert-Sauvé en santé et en sécurité du travail
294 (IRSST-2014-0009) and the fonds de recherche du Québec en nature et technologies (FRQNT)
- …
