44,743 research outputs found

    Addition theorems for spin spherical harmonics. II Results

    Full text link
    Based on the results of part I, we obtain the general form of the addition theorem for spin spherical harmonics and give explicit results in the cases involving one spin-s′s' and one spin-ss spherical harmonics with s′,s=1/2s',s=1/2, 1, 3/2, and ∣s′−s∣=0|s'-s|=0, 1. We obtain also a fully general addition theorem for one scalar and one tensor spherical harmonic of arbitrary rank. A variety of bilocal sums of ordinary and spin spherical harmonics are given in explicit form, including a general explicit expression for bilocal spherical harmonics

    Fermion Quasi-Spherical Harmonics

    Full text link
    Spherical Harmonics, Yℓm(θ,ϕ)Y_\ell^m(\theta,\phi), are derived and presented (in a Table) for half-odd-integer values of ℓ\ell and mm. These functions are eigenfunctions of L2L^2 and LzL_z written as differential operators in the spherical-polar angles, θ\theta and ϕ\phi. The Fermion Spherical Harmonics are a new, scalar and angular-coordinate-dependent representation of fermion spin angular momentum. They have 4π4\pi symmetry in the angle ϕ\phi, and hence are not single-valued functions on the Euclidean unit sphere; they are double-valued functions on the sphere, or alternatively are interpreted as having a double-sphere as their domain.Comment: 16 pages, 2 Tables. Submitted to J.Phys.

    Monopole Vector Spherical Harmonics

    Full text link
    Eigenfunctions of total angular momentum for a charged vector field interacting with a magnetic monopole are constructed and their properties studied. In general, these eigenfunctions can be obtained by applying vector operators to the monopole spherical harmonics in a manner similar to that often used for the construction of the ordinary vector spherical harmonics. This construction fails for the harmonics with the minimum allowed angular momentum. These latter form a set of vector fields with vanishing covariant curl and covariant divergence, whose number can be determined by an index theorem.Comment: 21 pages, CU-TP-60

    A fuzzy bipolar celestial sphere

    Full text link
    We introduce a non-commutative deformation of the algebra of bipolar spherical harmonics supporting the action of the full Lorentz algebra. Our construction is close in spirit to the one of the non-commutative spherical harmonics associated to the fuzzy sphere and, as such, it leads to a maximal value of the angular momentum. We derive the action of Lorentz boost generators on such non-commutative spherical harmonics and show that it is compatible with the existence of a maximal angular momentum.Comment: 15 pages, 4 figures; v2: typos corrected, references added; v3 title slightly changed, minor adjustments in the presentation, results unchanged. References added, matches published versio

    Smooth approximation of data on the sphere with splines

    Get PDF
    A computable function, defined over the sphere, is constructed, which is of classC1 at least and which approximates a given set of data. The construction is based upon tensor product spline basisfunctions, while at the poles of the spherical system of coordinates modified basisfunctions, suggested by the spherical harmonics expansion, are introduced to recover the continuity order at these points. Convergence experiments, refining the grid, are performed and results are compared with similar results available in literature.\ud \ud The approximation accuracy is compared with that of the expansion in terms of spherical harmonics. The use of piecewise approximation, with locally supported basisfunctions, versus approximation with spherical harmonics is discussed

    Obtaining Potential Field Solution with Spherical Harmonics and Finite Differences

    Full text link
    Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current and divergence free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: i) Remeshing the magnetogram onto a grid with uniform resolution in latitude, and limiting the highest order of the spherical harmonics to the anti-alias limit; ii) Using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms, and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publically available code, so that other researchers can also use it as an alternative to the spherical harmonics approach.Comment: This paper describes the publicly available Finite Difference Iterative Potential field Solver (FDIPS). The code can be obtained from http://csem.engin.umich.edu/FDIP

    Odd-Parity Bipolar Spherical Harmonics

    Get PDF
    Bipolar spherical harmonics (BiPoSHs) provide a general formalism for quantifying departures in the cosmic microwave background (CMB) from statistical isotropy (SI) and from Gaussianity. However, prior work has focused only on BiPoSHs with even parity. Here we show that there is another set of BiPoSHs with odd parity, and we explore their cosmological applications. We describe systematic artifacts in a CMB map that could be sought by measurement of these odd-parity BiPoSH modes. These BiPoSH modes may also be produced cosmologically through lensing by gravitational waves (GWs), among other sources. We derive expressions for the BiPoSH modes induced by the weak lensing of both scalar and tensor perturbations. We then investigate the possibility of detecting parity-breaking physics, such as chiral GWs, by cross-correlating opposite parity BiPoSH modes with multipole moments of the CMB polarization. We find that the expected signal-to-noise of such a detection is modest.Comment: 19 pages, 4 figures, Accepted to PR
    • …
    corecore