12 research outputs found

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications

    Towards low-cost gigabit wireless systems at 60 GHz

    Get PDF
    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget and the substantial RF imperfections. The work presented in this thesis is intended to support the design of low-cost 60-GHz transceivers for Gb/s transmission over short distances (a few meters). Typical applications are the transfer of high-definition streaming video and high-speed download. The presented work comprises research into the characteristics of typical 60-GHz channels, the evaluation of the transmission quality as well as the development of suitable baseband algorithms. This can be summarized as follows. In the first part, the characteristics of the wave propagation at 60 GHz are charted out by means of channel measurements and ray-tracing simulations for both narrow-beam and omni-directional configurations. Both line-of-sight (LOS) and non-line-of-sight (NLOS) are considered. This study reveals that antennas that produce a narrow beam can be used to boost the received power by tens of dBs when compared with omnidirectional configurations. Meanwhile, the time-domain dispersion of the channel is reduced to the order of nanoseconds, which facilitates Gb/s data transmission over 60-GHz channels considerably. Besides the execution of measurements and simulations, the influence of antenna radiation patterns is analyzed theoretically. It is indicated to what extent the signal-to-noise ratio, Rician-K factor and channel dispersion are improved by application of narrow-beam antennas and to what extent these parameters will be influenced by beam pointing errors. From both experimental and analytical work it can be concluded that the problem of the stringent link-budget can be solved effectively by application of beam-steering techniques. The second part treats wideband transmission methods and relevant baseband algorithms. The considered schemes include orthogonal frequency division multiplexing (OFDM), multi-carrier code division multiple access (MC-CDMA) and single carrier with frequency-domain equalization (SC-FDE), which are promising candidates for Gb/s wireless transmission. In particular, the optimal linear equalization in the frei quency domain and associated implementation issues such as synchronization and channel estimation are examined. Bit error rate (BER) expressions are derived to evaluate the transmission performance. Besides the linear equalization techniques, a low-complexity inter-symbol interference cancellation technique is proposed to achieve much better performance of code-spreading systems such as MC-CDMA and SC-FDE. Both theoretical analysis and simulations demonstrate that the proposed scheme offers great advantages as regards both complexity and performance. This makes it particularly suitable for 60-GHz applications in multipath environments. The third part treats the influence of quantization and RF imperfections on the considered transmission methods in the context of 60-GHz radios. First, expressions for the BER are derived and the influence of nonlinear distortions caused by the digital-to-analog converters, analog-to-digital converters and power amplifiers on the BER performance is examined. Next, the BER performance under the influence of phase noise and IQ imbalance is evaluated for the case that digital compensation techniques are applied in the receiver as well as for the case that such techniques are not applied. Finally, a baseline design of a low-cost Gb/s 60-GHz transceiver is presented. It is shown that, by application of beam-steering in combination with SC-FDE without advanced channel coding, a data rate in the order of 2 Gb/s can be achieved over a distance of 10 meters in a typical NLOS indoor scenario

    Polar coding for optical wireless communication

    Get PDF

    Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

    Get PDF
    Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions. Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals. The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER. The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered. The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area

    Joint source and channel coding

    Get PDF

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en IngenierĂ­a TelemĂĄticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    A channel model and coding for vehicle to vehicle communication based on a developed V-SCME

    Get PDF
    Over the recent years, VANET communication has attracted a lot of attention due to its potential in facilitating the implementation of 'Intelligent Transport System'. Vehicular applications need to be completely tested before deploying them in the real world. In this context, VANET simulations would be preferred in order to evaluate and validate the proposed model, these simulations are considered inexpensive compared to the real world (hardware) tests. The development of a more realistic simulation environment for VANET is critical in ensuring high performance. Any environment required for simulating VANET, needs to be more realistic and include a precise representation of vehicle movements, as well as passing signals among different vehicles. In order to achieve efficient results that reflect the reality, a high computational power during the simulation is needed which consumes a lot of time. The existing simulation tools could not simulate the exact physical conditions of the real world, so results can be viewed as unsatisfactory when compared with real world experiments. This thesis describes two approaches to improve such vehicle to vehicle communication. The first one is based on the development of an already existing approach, the Spatial Channel Model Extended (SCME) for cellular communication which is a verified, validated and well-established communication channel model. The new developed model, is called Vehicular - Spatial Channel Model Extended (V-SCME) and can be utilised for Vehicle to Vehicle communication. V-SCME is a statistical channel model which was specifically developed and configured to satisfy the requirements of the highly dynamic network topology such as vehicle to vehicle communication. V-SCME provides a precise channel coefficients library for vehicle to vehicle communication for use by the research community, so as to reduce the overall simulation time. The second approach is to apply V-BLAST (MIMO) coding which can be implemented with vehicle to vehicle communication and improve its performance over the V-SCME. The V- SCME channel model with V-BLAST coding system was used to improve vehicle to vehicle physical layer performance, which is a novel contribution. Based on analysis and simulations, it was found that the developed channel model V-SCME is a good solution to satisfy the requirements of vehicle to vehicle communication, where it has considered a lot of parameters in order to obtain more realistic results compared with the real world tests. In addition, V-BLAST (MIMO) coding with the V-SCME has shown an improvement in the bit error rate. The obtained results were intensively compared with other types of MIMO coding

    Channel prediction in wireless communications

    Get PDF
    Knowledge of the channel over which signals are sent is of prime importance in modern wireless communications. Inaccurate or incomplete channel information leads to high error rates and wasted bandwidth and energy. Although active channel measurement is commonly used to gain channel knowledge, it can only accurately represent the channel at the time the measurement was taken, makes energy and bandwidth demands, and adds significant complexity to the radio system. Due to the highly time variant nature of wireless channels, active measurements become invalid almost as soon as they are taken, making alternative approaches to predicting future behaviour highly attractive. Such systems would allow maximum advantage to be taken of the limited bandwidth available and make significant power savings. This thesis investigates a number of complementary technologies, leading towards a channel prediction scheme suitable for mobile devices. As a first step towards channel prediction, anomaly detection is investigated within periodic wireless signals to establish when radical changes in the channel occur. In pre- vious experiments, long monotonic sequences had been observed to coincide with certain anomalies but not others when using Kullback-Leibler Divergence (KLD) analysis, possibly allowing the characterisation of anomaly types. An investigation is described to explain the origin of these features in a rigorous mathematical sense. A proof is given for the causes of the monotonic sequences, followed by a discussion of the types of signal anomaly which would underly such a feature and the value of this information. The second part describes a novel channel characterisation method which uses a class of Recurrent Neural Network (RNN) called an Echo State Network (ESN). Using this tool, a channel characterisation system can be constructed without an explicit statistical or mathematical model of the wireless environment, relying instead on observed data. This approach is much more convenient than existing models which require detailed information about the wireless system's parameters and also allows for new channel classifications to be added easily. It is able to achieve double the correct classification rate of a conventional statistical classifier, and is computationally simple to implement, making it ideal for inclusion on low-power mobile devices. Following their successful use in characterisation, ESNs are used in the final part in an investigation into channel prediction in a number of different scenarios. They were however found to be unable to produce useful predictions for all but the most trivial channel models. An alternative method is described for indoor environments using an approach inspired by ray tracing. It is simple and computationally lightweight to implement, again making it suitable for mobile devices. Simulation results show that it can outperform pilot-assisted methods by a significant margin, while not wasting bandwidth on channel measurement

    Towards reliable communication in low-power wireless body area networks

    Get PDF
    Es wird zunehmend die Ansicht vertreten, dass tragbare Computer und Sensoren neue Anwendungen in den Bereichen Gesundheitswesen, personalisierte Fitness oder erweiterte RealitĂ€t ermöglichen werden. Die am Körper getragenen GerĂ€te sind dabei mithilfe eines Wireless Body Area Network (WBAN) verbunden, d.h. es wird drahtlose Kommunikation statt eines drahtgebundenen Kanals eingesetzt. Der drahtlose Kanal ist jedoch typischerweise ein eher instabiles Kommunikationsmedium und die Einsatzbedingungen von WBANs sind besonders schwierig: Einerseits wird die KanalqualitĂ€t stark von den physischen Bewegungen der Person beeinflusst, andererseits werden WBANs hĂ€ufig in lizenzfreien FunkbĂ€ndern eingesetzt und sind daher Störungen von anderen drahtlosen GerĂ€ten ausgesetzt. Oft benötigen WBAN Anwendungen aber eine zuverlĂ€ssige DatenĂŒbertragung. Das erste Ziel dieser Arbeit ist es, ein besseres VerstĂ€ndnis dafĂŒr zu schaffen, wie sich die spezifischen Einsatzbedingungen von WBANs auf die intra-WBAN Kommunikation auswirken. So wird zum Beispiel analysiert, welchen Einfluss die Platzierung der GerĂ€te auf der OberflĂ€che des menschlichen Körpers und die MobilitĂ€t des Benutzers haben. Es wird nachgewiesen, dass wĂ€hrend regelmĂ€ĂŸiger AktivitĂ€ten wie Laufen die empfangene SignalstĂ€rke stark schwankt, gleichzeitig aber SignalstĂ€rke-Spitzen oft einem regulĂ€ren Muster folgen. Außerdem wird gezeigt, dass in urbanen Umgebungen die Effekte von 2.4 GHz Radio Frequency (RF) Interferenz im Vergleich zu den Auswirkungen von fading (Schwankungen der empfangenen SignalstĂ€rke) eher gering sind. Allerdings fĂŒhrt RF Interferenz dazu, dass hĂ€ufiger BĂŒndelfehler auftreten, d.h. Fehler zeitlich korrelieren. Dies kann insbesondere in Anwendungen, die eine geringe Übertragungslatenz benötigen, problematisch sein. Der zweite Teil dieser Arbeit beschĂ€ftigt sich mit der Analyse von Verfahren, die potentiell die ZuverlĂ€ssigkeit der Kommunikation in WBANs erhöhen, ohne dass wesentlich mehr Energie verbraucht wird. ZunĂ€chst wird der Trade-off zwischen Übertragungslatenz und der ZuverlĂ€ssigkeit der Kommunikation analysiert. Diese Analyse basiert auf einem neuen Paket-Scheduling Algorithmus, der einen Beschleunigungssensor nutzt, um die WBAN Kommunikation auf die physischen Bewegungen der Person abzustimmen. Die Analyse zeigt, dass unzuverlĂ€ssige Kommunikationsverbindungen oft zuverlĂ€ssig werden, wenn Pakete wĂ€hrend vorhergesagter SignalstĂ€rke-Spitzen gesendet werden. Ferner wird analysiert, inwiefern die Robustheit gegen 2.4 GHz RF Interferenz verbessert werden kann. Dazu werden zwei Verfahren betrachtet: Ein bereits existierendes Verfahren, das periodisch einen Wechsel der Übertragungsfrequenz durchfĂŒhrt (channel hopping) und ein neues Verfahren, das durch RF Interferenz entstandene Bitfehler reparieren kann, indem der Inhalt mehrerer fehlerhafter Pakete kombiniert wird (packet combining). Eine Schlussfolgerung ist, dass FrequenzdiversitĂ€t zwar das Auftreten von BĂŒndelfehlern reduzieren kann, dass jedoch die statische Auswahl eines Kanals am oberen Ende des 2.4 GHz Bandes hĂ€ufig schon eine akzeptable Abhilfe gegen RF Interferenz darstellt.There is a growing belief that wearable computers and sensors will enable new applications in areas such as healthcare, personal fitness or augmented reality. The devices are attached to a person and connected through a Wireless Body Area Network (WBAN), which replaces the wires of traditional monitoring systems by wireless communication. This comes, however, at the cost of turning a reliable communication channel into an unreliable one. The wireless channel is typically a rather unstable medium for communication and the conditions under which WBANs have to operate are particularly harsh: not only is the channel strongly influenced by the movements of the person, but WBANs also often operate in unlicensed frequency bands and may therefore be exposed to a significant amount of interference from other wireless devices. Yet, many envisioned WBAN applications require reliable data transmission. The goals of this thesis are twofold: first, we aim at establishing a better understanding of how the specific WBAN operating conditions, such as node placement on the human body surface and user mobility, impact intra-WBAN communication. We show that during periodic activities like walking the received signal strength on an on-body communication link fluctuates strongly, but signal strength peaks often follow a regular pattern. Furthermore, we find that in comparison to the effects of fading 2.4 GHz Radio Frequency (RF) interference causes relatively little packet loss - however, urban 2.4 GHz RF noise is bursty (correlated in time), which may be problematic for applications with low latency bounds. The second goal of this thesis is to analyze how communication reliability in WBANs can be improved without sacrificing a significant amount of additional energy. To this end, we first explore the trade-off between communication latency and communication reliability. This analysis is based on a novel packet scheduling algorithm, which makes use of an accelerometer to couple WBAN communication with the movement patterns of the user. The analysis shows that unreliable links can often be made reliable if packets are transmitted at predicted signal strength peaks. In addition, we analyze to what extent two mechanisms can improve robustness against 2.4 GHz RF interference when adopted in a WBAN context: we analyze the benefits of channel hopping, and we examine how the packet retransmission process can be made more efficient by using a novel packet combining algorithm that allows to repair packets corrupted by RF interference. One of the conclusions is that while frequency agility may decrease "burstiness" of errors the static selection of a channel at the upper end of the 2.4 GHz band often already represents a good remedy against RF interference

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems
    corecore