5,632 research outputs found
<i>Melav2</i>, an <i>elav</i>-like gene, is essential for spermatid differentiation in the flatworm <i>Macrostomum lignano</i>
BackgroundFailure of sperm differentiation is one of the major causes of male sterility. During spermiogenesis, spermatids undergo a complex metamorphosis, including chromatin condensation and cell elongation. Although the resulting sperm morphology and property can vary depending on the species, these processes are fundamental in many organisms. Studying genes involved in such processes can thus provide important information for a better understanding of spermatogenesis, which might be universally applied to many other organisms.ResultsIn a screen for genes that have gonad-specific expression we isolated an elav-like gene, melav2, from Macrostomum lignano, containing the three RNA recognition motifs characteristic of elav-like genes. We found that melav2 mRNA was expressed exclusively in the testis, as opposed to the known elav genes, which are expressed in the nervous system. The RNAi phenotype of melav2 was characterized by an aberrant spermatid morphology, where sperm elongation often failed, and an empty seminal vesicle. Melav2 RNAi treated worms were thus male-sterile. Further analysis revealed that in melav2 RNAi treated worms precocious chromatin condensation occurred during spermatid differentiation, resulting in an abnormally tightly condensed chromatin and large vacuoles in round spermatids. In addition, immunostaining using an early-spermatid specific antibody revealed that melav2 RNAi treated worms had a larger amount of signal positive cells, suggesting that many cells failed the transition from early spermatid stage.ConclusionWe characterize a new function for elav-like genes, showing that melav2 plays a crucial role during spermatid differentiation, especially in the regulation of chromatin condensation and/or cell elongation
Deficiency of Mkrn2 causes abnormal spermiogenesis and spermiation, and impairs male fertility.
Although recent studies have shed insights on some of the potential causes of male infertility, new underlining molecular mechanisms still remain to be elucidated. Makorin-2 (Mkrn2) is an evolutionarily conserved gene whose biological functions are not fully known. We developed an Mrkn2 knockout mouse model to study the role of this gene, and found that deletion of Mkrn2 in mice led to male infertility. Mkrn2 knockout mice produced abnormal sperms characterized by low number, poor motility, and aberrant morphology. Disruption of Mkrn2 also caused failure of sperm release (spermiation failure) and misarrangement of ectoplasmic specialization (ES) in testes, thus impairing spermiogenesis and spermiation. To understand the molecular mechanism, we found that expression of Odf2, a vital protein in spermatogenesis, was significantly decreased. In addition, we found that expression levels of Odf2 were decreased in Mkrn2 knockout mice. We also found that MKRN2 was prominently expressed in the sperm of normal men, but was significantly reduced in infertile men. This result indicates that our finding is clinically relevant. The results of our study provided insights into a new mechanism of male infertility caused by the MKRN2 downregulation
Selenoproteins in mammalian spermatogenesis:role of the nuclear GPx4
The selenoprotein Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPx/GPx4) is an enzyme unique among the various GPxs, because it is able to use protein thiols, beside glutathione, The GPx4 gene encodes for three isoforms having different subcellular localization, being located in the mitochondria (mGPx4), in the cytosol (cGPx4) and in the nucleus (nGPx4), each having distinct functions. The mGPx4 is important to male fertility, as proven by the structural abnormalities of sperm tails from KO mice specifically lacking this isoform, which make these mutants infertile. As for the nuclear isoform, nGPx4-KO mice are fertile but show impaired nuclear condensation of sperm isolated from the caput epididymis, suggesting a role in chromatin stability. To gain more insight into the functions of nGPx4, we first investigated the subnuclear localization of this form in both COS-1 cells overexpressing nGPx4 and mouse male germ cells at different steps of maturation (round spermatids and epididymal spermatozoa). We performed both biochemical and morphological analyses and found that nGPx4 was localized at the level of the nuclear matrix. To test the functional role in chromatin dynamics sperm isolated from the caput and the cauda epididymides from WT and nGPx4-KO mice were subjected to an in vitro chromatin decondensation assay. Our results show that nGPx4-KO mice sperm decondensed earlier than those from WT at all stages of epididymal maturation, providing conclusive evidence that nGPx4 is required for a correct sperm chromatin remodelling. We next addressed the issue whether the sperm nuclear structure instability caused by the lack of nGPx4 might impact on the early events occurring after fertilization. In "in vitro" fertilization experiments, we revealed that, compared to WT, nGPx4-KO mice showed an acceleration of sperm nuclear decondensation, confirming the results previously obtained
The cell-cell junctions of mammalian testes: I. The adhering junctions of the seminiferous epithelium represent special differentiation structures
The seminiferous tubules and the excurrent ducts of the mammalian testis are physiologically separated from the mesenchymal tissues and the blood and lymph system by a special structural barrier to paracellular translocations of molecules and particles: the “blood–testis barrier”, formed by junctions connecting Sertoli cells with each other and with spermatogonial cells. In combined biochemical as well as light and electron microscopical studies we systematically determine the molecules located in the adhering junctions of adult mammalian (human, bovine, porcine, murine, i.e., rat and mouse) testis. We show that the seminiferous epithelium does not contain desmosomes, or “desmosome-like” junctions, nor any of the desmosome-specific marker molecules and that the adhering junctions of tubules and ductules are fundamentally different. While the ductules contain classical epithelial cell layers with E-cadherin-based adherens junctions (AJs) and typical desmosomes, the Sertoli cells of the tubules lack desmosomes and “desmosome-like” junctions but are connected by morphologically different forms of AJs. These junctions are based on N-cadherin anchored in cytoplasmic plaques, which in some subforms appear thick and dense but in other subforms contain only scarce and loosely arranged plaque structures formed by α- and β-catenin, proteins p120, p0071 and plakoglobin, together with a member of the striatin family and also, in rodents, the proteins ZO-1 and myozap. These N-cadherin-based AJs also include two novel types of junctions: the “areae adhaerentes”, i.e., variously-sized, often very large cell-cell contacts and small sieve-plate-like AJs perforated by cytoplasm-to-cytoplasm channels of 5–7 nm internal diameter (“cribelliform junctions”). We emphasize the unique character of this epithelium that totally lacks major epithelial marker molecules and structures such as keratin filaments and desmosomal elements as well as EpCAM- and PERP-containing junctions. We also discuss the nature, development and possible functions of these junctions.German-Israeli Foundation for Scientific Research and Development (GIF grant I-1098-43.11/2010
Meiotic sex chromosome cohesion and autosomal synapsis are supported by Esco2.
In mitotic cells, establishment of sister chromatid cohesion requires acetylation of the cohesin subunit SMC3 (acSMC3) by ESCO1 and/or ESCO2. Meiotic cohesin plays additional but poorly understood roles in the formation of chromosome axial elements (AEs) and synaptonemal complexes. Here, we show that levels of ESCO2, acSMC3, and the pro-cohesion factor sororin increase on meiotic chromosomes as homologs synapse. These proteins are less abundant on the largely unsynapsed sex chromosomes, whose sister chromatid cohesion appears weaker throughout the meiotic prophase. Using three distinct conditional Esco2 knockout mouse strains, we demonstrate that ESCO2 is essential for male gametogenesis. Partial depletion of ESCO2 in prophase I spermatocytes delays chromosome synapsis and further weakens cohesion along sex chromosomes, which show extensive separation of AEs into single chromatids. Unsynapsed regions of autosomes are associated with the sex chromatin and also display split AEs. This study provides the first evidence for a specific role of ESCO2 in mammalian meiosis, identifies a particular ESCO2 dependence of sex chromosome cohesion and suggests support of autosomal synapsis by acSMC3-stabilized cohesion
Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis
Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1-/-) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1-/- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with cH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1-/- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1-/- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. © 2010 Shin et al
Expression of Ciona intestinalis AOX causes male reproductive defects in Drosophila melanogaster
Background: Mitochondrial alternative respiratory-chain enzymes are phylogenetically widespread, and buffer stresses affecting oxidative phosphorylation in species that possess them. However, they have been lost in the evolutionary lineages leading to vertebrates and arthropods, raising the question as to what survival or reproductive disadvantages they confer. Recent interest in using them in therapy lends a biomedical dimension to this question. Methods: Here, we examined the impact of the expression of Ciona intestinalis alternative oxidase, AOX, on the reproductive success of Drosophila melanogaster males. Sperm-competition assays were performed between flies carrying three copies of a ubiquitously expressed AOX construct, driven by the a-tubulin promoter, and wild-type males of the same genetic background. Results: In sperm-competition assays, AOX conferred a substantial disadvantage, associated with decreased production of mature sperm. Sperm differentiation appeared to proceed until the last stages, but was spatially deranged, with spermatozoids retained in the testis instead of being released to the seminal vesicle. High AOX expression was detected in the outermost cell-layer of the testis sheath, which we hypothesize may disrupt a signal required for sperm maturation. Conclusions: AOX expression in Drosophila thus has effects that are deleterious to male reproductive function. Our results imply that AOX therapy must be developed with caution.Peer reviewe
Internal anatomy of the terminal ampoule of Metapenaeus monoceros (Fabricius, 1798) and its role in spermatophore formation
Internal anatomy of terminal ampoule of Metapenaeus monoceros and the role played by this organ in spermatophore
formation were elucidated employing histological and ultrastructural techniques. Terminal ampoule of mature male specimens
consisted of an outer layer of connective tissue surrounding a layer of circular and longitudinal muscle fibres. The lumen of
terminal ampoule was divided into four chambers lined by basophilic glandular epithelial cells, which showed intense
secretary activity. One of the chambers had sperm mass surrounded by primary and secondary spermatophore layers. Formation
of an eosinophilic matrix and adhesive globules resulting from secretions by glandular epithelial cells were observed in other
chambers. Ultrastructural studies revealed that the cytoplasm of the epithelial cells had numerous free ribosomes, concentric
arrangement of rough endoplasmic reticulum with vesicles often discharged into the lumen, and numerous electron dense
bodies, all confirming the intense secretary activity taking place in the ampoule
- …
