5 research outputs found

    Semi-Supervised Deep Learning for Microcontroller Performance Screening

    Get PDF
    In safety-critical applications, microcontrollers must satisfy strict quality constraints and performances in terms of F_max (the maximum operating frequency). Data extracted from on-chip ring oscillators (ROs) can model the F_max of integrated circuits using machine learning models. Those models are suitable for the performance screening process. Acquiring data from the ROs is a fast process that leads to many unlabeled data. Contrarily, the labeling phase (i.e., acquiring F_max) is a time-consuming and costly task, that leads to a small set of labeled data. This paper presents deep-learning-based methodologies to cope with the low number of labeled data in microcontroller performance screening. We propose a method that takes advantage of the high number of unlabeled samples in a semi-supervised learning fashion. We derive deep feature extractor models that project data into higher dimensional spaces and use the data feature embedding to face the performance prediction problem with simple linear regression. Experiments showed that the proposed models outperformed state-of-the-art methodologies in terms of prediction error and permitted us to use a significantly smaller number of devices to be characterized, thus reducing the time needed to build ML models by a factor of six with respect to baseline approaches

    A Multi-Label Active Learning Framework for Microcontroller Performance Screening

    Get PDF
    In safety-critical applications, microcontrollers have to be tested to satisfy strict quality and performances constraints. It has been demonstrated that on-chip ring oscillators can be be used as speed monitors to reliably predict the performances. However, any machine-learning model is likely to be inaccurate if trained on an inadequate dataset, and labeling data for training is quite a costly process. In this paper, we present a methodology based on active learning to select the best samples to be included in the training set, significantly reducing the time and cost required. Moreover, since different speed measurements are available, we designed a multi-label technique to take advantage of their correlations. Experimental results demonstrate that the approach halves the training-set size, with respect to a random labelling, while it increases the predictive accuracy, with respect to standard single-label machine-learning models
    corecore