52,833 research outputs found

    Concept Type Prediction and Responsive Adaptation in a Dialogue System

    Get PDF
    Responsive adaptation in spoken dialog systems involves a change in dialog system behavior in response to a user or a dialog situation. In this paper we address responsive adaptation in the automatic speech recognition (ASR) module of a spoken dialog system. We hypothesize that information about the content of a user utterance may help improve speech recognition for the utterance. We use a two-step process to test this hypothesis: first, we automatically predict the task-relevant concept types likely to be present in a user utterance using features from the dialog context and from the output of first-pass ASR of the utterance; and then, we adapt the ASR's language model to the predicted content of the user's utterance and run a second pass of ASR. We show that: (1) it is possible to achieve high accuracy in determining presence or absence of particular concept types in a post-confirmation utterance; and (2) 2-pass speech recognition with concept type classification and language model adaptation can lead to improved speech recognition performance for post-confirmation utterances

    Using information above the word level for automatic speech recognition

    Get PDF
    This thesis introduces a general method for using information at the utterance level and across utterances for automatic speech recognition. The method involves classification of utterances into types. Using constraints at the utterance level via this classification method allows information sources to be exploited which cannot necessarily be used directly for word recognition. The classification power of three sources of information is investigated: the language model in the speech recogniser, dialogue context and intonation. The method is applied to a challenging task: the recognition of spontaneous dialogue speech. The results show success in automatic utterance type classification, and subsequent word error rate reduction over a baseline system, when all three information sources are probabilistically combined

    Large scale evaluation of importance maps in automatic speech recognition

    Full text link
    In this paper, we propose a metric that we call the structured saliency benchmark (SSBM) to evaluate importance maps computed for automatic speech recognizers on individual utterances. These maps indicate time-frequency points of the utterance that are most important for correct recognition of a target word. Our evaluation technique is not only suitable for standard classification tasks, but is also appropriate for structured prediction tasks like sequence-to-sequence models. Additionally, we use this approach to perform a large scale comparison of the importance maps created by our previously introduced technique using "bubble noise" to identify important points through correlation with a baseline approach based on smoothed speech energy and forced alignment. Our results show that the bubble analysis approach is better at identifying important speech regions than this baseline on 100 sentences from the AMI corpus.Comment: submitted to INTERSPEECH 202

    Speech Emotion Recognition Using Multi-hop Attention Mechanism

    Full text link
    In this paper, we are interested in exploiting textual and acoustic data of an utterance for the speech emotion classification task. The baseline approach models the information from audio and text independently using two deep neural networks (DNNs). The outputs from both the DNNs are then fused for classification. As opposed to using knowledge from both the modalities separately, we propose a framework to exploit acoustic information in tandem with lexical data. The proposed framework uses two bi-directional long short-term memory (BLSTM) for obtaining hidden representations of the utterance. Furthermore, we propose an attention mechanism, referred to as the multi-hop, which is trained to automatically infer the correlation between the modalities. The multi-hop attention first computes the relevant segments of the textual data corresponding to the audio signal. The relevant textual data is then applied to attend parts of the audio signal. To evaluate the performance of the proposed system, experiments are performed in the IEMOCAP dataset. Experimental results show that the proposed technique outperforms the state-of-the-art system by 6.5% relative improvement in terms of weighted accuracy.Comment: 5 pages, Accepted as a conference paper at ICASSP 2019 (oral presentation
    • …
    corecore