2 research outputs found

    AMRConvNet: AMR-Coded Speech Enhancement Using Convolutional Neural Networks

    Full text link
    Speech is converted to digital signals using speech coding for efficient transmission. However, this often lowers the quality and bandwidth of speech. This paper explores the application of convolutional neural networks for Artificial Bandwidth Expansion (ABE) and speech enhancement on coded speech, particularly Adaptive Multi-Rate (AMR) used in 2G cellular phone calls. In this paper, we introduce AMRConvNet: a convolutional neural network that performs ABE and speech enhancement on speech encoded with AMR. The model operates directly on the time-domain for both input and output speech but optimizes using combined time-domain reconstruction loss and frequency-domain perceptual loss. AMRConvNet resulted in an average improvement of 0.425 Mean Opinion Score - Listening Quality Objective (MOS-LQO) points for AMR bitrate of 4.75k, and 0.073 MOS-LQO points for AMR bitrate of 12.2k. AMRConvNet also showed robustness in AMR bitrate inputs. Finally, an ablation test showed that our combined time-domain and frequency-domain loss leads to slightly higher MOS-LQO and faster training convergence than using either loss alone.Comment: IEEE SMC 202

    Waveform Modeling and Generation Using Hierarchical Recurrent Neural Networks for Speech Bandwidth Extension

    Full text link
    This paper presents a waveform modeling and generation method using hierarchical recurrent neural networks (HRNN) for speech bandwidth extension (BWE). Different from conventional BWE methods which predict spectral parameters for reconstructing wideband speech waveforms, this BWE method models and predicts waveform samples directly without using vocoders. Inspired by SampleRNN which is an unconditional neural audio generator, the HRNN model represents the distribution of each wideband or high-frequency waveform sample conditioned on the input narrowband waveform samples using a neural network composed of long short-term memory (LSTM) layers and feed-forward (FF) layers. The LSTM layers form a hierarchical structure and each layer operates at a specific temporal resolution to efficiently capture long-span dependencies between temporal sequences. Furthermore, additional conditions, such as the bottleneck (BN) features derived from narrowband speech using a deep neural network (DNN)-based state classifier, are employed as auxiliary input to further improve the quality of generated wideband speech. The experimental results of comparing several waveform modeling methods show that the HRNN-based method can achieve better speech quality and run-time efficiency than the dilated convolutional neural network (DCNN)-based method and the plain sample-level recurrent neural network (SRNN)-based method. Our proposed method also outperforms the conventional vocoder-based BWE method using LSTM-RNNs in terms of the subjective quality of the reconstructed wideband speech.Comment: Accepted by IEEE Transactions on Audio, Speech and Language Processin
    corecore