15 research outputs found

    An Optimal Application-Aware Resource Block Scheduling in LTE

    Full text link
    In this paper, we introduce an approach for application-aware resource block scheduling of elastic and inelastic adaptive real-time traffic in fourth generation Long Term Evolution (LTE) systems. The users are assigned to resource blocks. A transmission may use multiple resource blocks scheduled over frequency and time. In our model, we use logarithmic and sigmoidal-like utility functions to represent the users applications running on different user equipments (UE)s. We present an optimal problem with utility proportional fairness policy, where the fairness among users is in utility percentage (i.e user satisfaction with the service) of the corresponding applications. Our objective is to allocate the resources to the users with priority given to the adaptive real-time application users. In addition, a minimum resource allocation for users with elastic and inelastic traffic should be guaranteed. Every user subscribing for the mobile service should have a minimum quality-of-service (QoS) with a priority criterion. We prove that our scheduling policy exists and achieves the maximum. Therefore the optimal solution is tractable. We present a centralized scheduling algorithm to allocate evolved NodeB (eNodeB) resources optimally with a priority criterion. Finally, we present simulation results for the performance of our scheduling algorithm and compare our results with conventional proportional fairness approaches. The results show that the user satisfaction is higher with our proposed method.Comment: 5 page

    A Utility Proportional Fairness Resource Allocation in Spectrally Radar-Coexistent Cellular Networks

    Full text link
    Spectrum sharing is an elegant solution to addressing the scarcity of the bandwidth for wireless communications systems. This research studies the feasibility of sharing the spectrum between sectorized cellular systems and stationary radars interfering with certain sectors of the communications infrastructure. It also explores allocating optimal resources to mobile devices in order to provide with the quality of service for all running applications whilst growing the communications network spectrally coexistent with the radar systems. The rate allocation problem is formulated as two convex optimizations, where the radar-interfering sector assignments are extracted from the portion of the spectrum non-overlapping with the radar operating frequency. Such a double-stage resource allocation procedure inherits the fairness into the rate allocation scheme by first assigning the spectrally radar-overlapping resources

    Context-Aware Resource Allocation in Cellular Networks

    Full text link
    We define and propose a resource allocation architecture for cellular networks. The architecture combines content-aware, time-aware and location-aware resource allocation for next generation broadband wireless systems. The architecture ensures content-aware resource allocation by prioritizing real-time applications users over delay-tolerant applications users when allocating resources. It enables time-aware resource allocation via traffic-dependent pricing that varies during different hours of day (e.g. peak and off-peak traffic hours). Additionally, location-aware resource allocation is integrable in this architecture by including carrier aggregation of various frequency bands. The context-aware resource allocation is an optimal and flexible architecture that can be easily implemented in practical cellular networks. We highlight the advantages of the proposed network architecture with a discussion on the future research directions for context-aware resource allocation architecture. We also provide experimental results to illustrate a general proof of concept for this new architecture.Comment: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    A Price Selective Centralized Algorithm for Resource Allocation with Carrier Aggregation in LTE Cellular Networks

    Full text link
    In this paper, we consider a resource allocation with carrier aggregation optimization problem in long term evolution (LTE) cellular networks. In our proposed model, users are running elastic or inelastic traffic. Each user equipment (UE) is assigned an application utility function based on the type of its application. Our objective is to allocate multiple carriers resources optimally among users in their coverage area while giving the user the ability to select one of the carriers to be its primary carrier and the others to be its secondary carriers. The UE's decision is based on the carrier price per unit bandwidth. We present a price selective centralized resource allocation with carrier aggregation algorithm to allocate multiple carriers resources optimally among users while providing a minimum price for the allocated resources. In addition, we analyze the convergence of the algorithm with different carriers rates. Finally, we present simulation results for the performance of the proposed algorithm.Comment: Submitted to IEE

    On the use of prioritization and network slicing features for mission critical and commercial traffic multiplexing in 5G Radio Access Networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Public Protection and Disaster Relief (PPDR) sector is undergoing an important transition with the deployment of Mission Critical (MC) mobile broadband technology based on 3GPP standards, with multiple initiatives on-going worldwide for providing PPDR agencies with broadband communications capabilities. One common approach being adopted is the delivery of MC services together with commercial traffic over public mobile networks and the use of prioritization mechanisms to protect the MC connections in congestion situations. However, this approach leaves commercial traffic unprotected in front of a noncontrolled surge of MC traffic in specific cells since all resources would be allocated to serve this traffic. In this context, this paper proposes a solution to properly multiplex MC and commercial services with congestion protection for both types of services. The solution is based on the exploitation of the network slicing features brought into the new 5G standards. In particular, the paper describes how different slices can be parameterized in a 5G Radio Access Network (RAN) so that radio load guarantees can be established for each type of service. The proposed solution is evaluated in an illustrative scenario by means of simulations. Obtained results show the improvements in traffic isolation achievable by the slicing configuration when compared to the solution that only relies on prioritization mechanismsPeer ReviewedPostprint (author's final draft
    corecore