20,860 research outputs found

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin

    Sensitive White Space Detection with Spectral Covariance Sensing

    Full text link
    This paper proposes a novel, highly effective spectrum sensing algorithm for cognitive radio and whitespace applications. The proposed spectral covariance sensing (SCS) algorithm exploits the different statistical correlations of the received signal and noise in the frequency domain. Test statistics are computed from the covariance matrix of a partial spectrogram and compared with a decision threshold to determine whether a primary signal or arbitrary type is present or not. This detector is analyzed theoretically and verified through realistic open-source simulations using actual digital television signals captured in the US. Compared to the state of the art in the literature, SCS improves sensitivity by 3 dB for the same dwell time, which is a very significant improvement for this application. Further, it is shown that SCS is highly robust to noise uncertainty, whereas many other spectrum sensors are not

    Spatial Wireless Channel Prediction under Location Uncertainty

    Full text link
    Spatial wireless channel prediction is important for future wireless networks, and in particular for proactive resource allocation at different layers of the protocol stack. Various sources of uncertainty must be accounted for during modeling and to provide robust predictions. We investigate two channel prediction frameworks, classical Gaussian processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact of location uncertainty during learning/training and prediction/testing, for scenarios where measurements uncertainty are dominated by large-scale fading. We observe that cGP generally fails both in terms of learning the channel parameters and in predicting the channel in the presence of location uncertainties.\textcolor{blue}{{} }In contrast, uGP explicitly considers the location uncertainty. Using simulated data, we show that uGP is able to learn and predict the wireless channel
    • …
    corecore