8,290 research outputs found

    Market Based Approaches for Dynamic Spectrum Assignment

    Get PDF
    Abstract—Much of the technical literature on spectrum sharing has been on developing technologies and systems for non-cooperative) opportunistic use. In this paper, we situate this approach to secondary spectrum use in a broader context, one that includes cooperative approaches to Dynamic Spectrum Access (DSA). In this paper, we introduce readers to this broader approach to DSA by contrasting it with non-cooperative sharing (opportunistic use), surveying relevant literature, and suggesting future directions for researc

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Dynamic Geospatial Spectrum Modelling: Taxonomy, Options and Consequences

    Get PDF
    Much of the research in Dynamic Spectrum Access (DSA) has focused on opportunistic access in the temporal domain. While this has been quite useful in establishing the technical feasibility of DSA systems, it has missed large sections of the overall DSA problem space. In this paper, we argue that the spatio-temporal operating context of specific environments matters to the selection of the appropriate technology for learning context information. We identify twelve potential operating environments and compare four context awareness approaches (on-board sensing, databases, sensor networks, and cooperative sharing) for these environments. Since our point of view is overall system cost and efficiency, this analysis has utility for those regulators whose objectives are reducing system costs and enhancing system efficiency. We conclude that regulators should pay attention to the operating environment of DSA systems when determining which approaches to context learning to encourage

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE
    corecore