3,053 research outputs found

    Spectrum clouds: A session based spectrum trading system for multi-hop cognitive radio networks

    Full text link
    Abstract—Spectrum trading creates more accessing opportu-nities for secondary users (SUs) and economically benefits the primary users (PUs). However, it is challenging to implement spectrum trading in multi-hop cognitive radio networks (CRNs) due to harsh cognitive radio (CR) requirements on SUs ’ devices and complex conflict and competition relationship among dif-ferent CR sessions. Unlike the per-user based spectrum trading designs in previous studies, in this paper, we propose a novel session based spectrum trading system, spectrum clouds, in multi-hop CRNs. In spectrum clouds, we introduce a new service provider, called secondary service provider (SSP), to harvest the available spectrum bands and facilitate the accessing of SUs without CR capability. The SSP also conducts spectrum trading among CR sessions w.r.t. their conflicts and competitions. Lever-aging a 3-dimensional (3-D) conflict graph, we mathematically describe the conflicts and competitions among the candidate sessions for spectrum trading. Given the rate requirements and bidding values of candidate trading sessions, we formulate the optimal spectrum trading into the SSP’s revenue maximization problem under multiple cross-layer constraints in multi-hop CRNs. In view of the NP-hardness of the problem, we have also developed heuristic algorithms to pursue feasible solutions. Through extensive simulations, we show that the solutions found by the proposed algorithms are close to the optimal one. I

    Joint Channel Assignment and Opportunistic Routing for Maximizing Throughput in Cognitive Radio Networks

    Full text link
    In this paper, we consider the joint opportunistic routing and channel assignment problem in multi-channel multi-radio (MCMR) cognitive radio networks (CRNs) for improving aggregate throughput of the secondary users. We first present the nonlinear programming optimization model for this joint problem, taking into account the feature of CRNs-channel uncertainty. Then considering the queue state of a node, we propose a new scheme to select proper forwarding candidates for opportunistic routing. Furthermore, a new algorithm for calculating the forwarding probability of any packet at a node is proposed, which is used to calculate how many packets a forwarder should send, so that the duplicate transmission can be reduced compared with MAC-independent opportunistic routing & encoding (MORE) [11]. Our numerical results show that the proposed scheme performs significantly better that traditional routing and opportunistic routing in which channel assignment strategy is employed.Comment: 5 pages, 4 figures, to appear in Proc. of IEEE GlobeCom 201

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference
    • …
    corecore