2,498 research outputs found

    Downlink Noncoherent Cooperation without Transmitter Phase Alignment

    Full text link
    Multicell joint processing can mitigate inter-cell interference and thereby increase the spectral efficiency of cellular systems. Most previous work has assumed phase-aligned (coherent) transmissions from different base transceiver stations (BTSs), which is difficult to achieve in practice. In this work, a noncoherent cooperative transmission scheme for the downlink is studied, which does not require phase alignment. The focus is on jointly serving two users in adjacent cells sharing the same resource block. The two BTSs partially share their messages through a backhaul link, and each BTS transmits a superposition of two codewords, one for each receiver. Each receiver decodes its own message, and treats the signals for the other receiver as background noise. With narrowband transmissions the achievable rate region and maximum achievable weighted sum rate are characterized by optimizing the power allocation (and the beamforming vectors in the case of multiple transmit antennas) at each BTS between its two codewords. For a wideband (multicarrier) system, a dual formulation of the optimal power allocation problem across sub-carriers is presented, which can be efficiently solved by numerical methods. Results show that the proposed cooperation scheme can improve the sum rate substantially in the low to moderate signal-to-noise ratio (SNR) range.Comment: 30 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    A Practical Cooperative Multicell MIMO-OFDMA Network Based on Rank Coordination

    Get PDF
    An important challenge of wireless networks is to boost the cell edge performance and enable multi-stream transmissions to cell edge users. Interference mitigation techniques relying on multiple antennas and coordination among cells are nowadays heavily studied in the literature. Typical strategies in OFDMA networks include coordinated scheduling, beamforming and power control. In this paper, we propose a novel and practical type of coordination for OFDMA downlink networks relying on multiple antennas at the transmitter and the receiver. The transmission ranks, i.e.\ the number of transmitted streams, and the user scheduling in all cells are jointly optimized in order to maximize a network utility function accounting for fairness among users. A distributed coordinated scheduler motivated by an interference pricing mechanism and relying on a master-slave architecture is introduced. The proposed scheme is operated based on the user report of a recommended rank for the interfering cells accounting for the receiver interference suppression capability. It incurs a very low feedback and backhaul overhead and enables efficient link adaptation. It is moreover robust to channel measurement errors and applicable to both open-loop and closed-loop MIMO operations. A 20% cell edge performance gain over uncoordinated LTE-A system is shown through system level simulations.Comment: IEEE Transactions or Wireless Communications, Accepted for Publicatio
    • …
    corecore