396,414 research outputs found
Optical Spectroscopy of Distant Red Galaxies
We present optical spectroscopic follow-up of a sample of Distant Red
Galaxies (DRGs) with K 2.3, in the Hubble Deep
Field South, the MS 1054-03 field, and the Chandra Deep Field South.
Spectroscopic redshifts were obtained for 15 DRGs. Only 2 out of 15 DRGs are
located at z < 2, suggesting a high efficiency to select high-redshift sources.
From other spectroscopic surveys in the CDFS targeting intermediate to high
redshift populations selected with different criteria, we find spectroscopic
redshifts for a further 30 DRGs. We use the sample of spectroscopically
confirmed DRGs to establish the high quality (scatter in \Delta z/(1+z) of ~
0.05) of their photometric redshifts in the considered deep fields, as derived
with EAZY (Brammer et al. 2008). Combining the spectroscopic and photometric
redshifts, we find that 74% of DRGs with K 2. The combined
spectroscopic and photometric sample is used to analyze the distinct intrinsic
and observed properties of DRGs at z 2. In our photometric sample
to K < 22.5, low-redshift DRGs are brighter in K than high-redshift DRGs by 0.7
mag, and more extincted by 1.2 mag in Av. Our analysis shows that the DRG
criterion selects galaxies with different properties at different redshifts.
Such biases can be largely avoided by selecting galaxies based on their
rest-frame properties, which requires very good multi-band photometry and high
quality photometric redshifts.Comment: Accepted for publication in the Astrophysical Journal, 13 pages, 8
figures, 5 table
The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields
We present the first APOKASC catalog of spectroscopic and asteroseismic
properties of 1916 red giants observed in the Kepler fields. The spectroscopic
parameters provided from the Apache Point Observatory Galactic Evolution
Experiment project are complemented with asteroseismic surface gravities,
masses, radii, and mean densities determined by members of the Kepler
Asteroseismology Science Consortium. We assess both random and systematic
sources of error and include a discussion of sample selection for giants in the
Kepler fields. Total uncertainties in the main catalog properties are of order
80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass
and radius, respectively; these reflect a combination of systematic and random
errors. Asteroseismic surface gravities are substantially more precise and
accurate than spectroscopic ones, and we find good agreement between their mean
values and the calibrated spectroscopic surface gravities. There are, however,
systematic underlying trends with Teff and log g. Our effective temperature
scale is between 0-200 K cooler than that expected from the Infrared Flux
Method, depending on the adopted extinction map, which provides evidence for a
lower value on average than that inferred for the Kepler Input Catalog (KIC).
We find a reasonable correspondence between the photometric KIC and
spectroscopic APOKASC metallicity scales, with increased dispersion in KIC
metallicities as the absolute metal abundance decreases, and offsets in Teff
and log g consistent with those derived in the literature. We present mean
fitting relations between APOKASC and KIC observables and discuss future
prospects, strengths, and limitations of the catalog data.Comment: 49 pages. ApJSupp, in press. Full machine-readable ascii files
available under ancillary data. Categories: Kepler targets, asteroseismology,
large spectroscopic survey
FIR/submm spectroscopy with Herschel: first results from the VNGS and H-ATLAS surveys
The FIR/submm window is one of the least-studied regions of the
electromagnetic spectrum, yet this wavelength range is absolutely crucial for
understanding the physical processes and properties of the ISM in galaxies. The
advent of the Herschel Space Observatory has opened up the entire FIR/submm
window for spectroscopic studies. We present the first FIR/submm spectroscopic
results on both nearby and distant galaxies obtained in the frame of two
Herschel key programs: the Very Nearby Galaxies Survey and the Herschel ATLAS
A program for computing shock-tube gas dynamic properties
Computer program calculates thermodynamic properties from basic spectroscopic data. Program capacity is a mixture of 100 different species composed of ten different elements. The output is a complete thermodynamic and chemical description of the gas
Spectroscopic follow up of arclets in AC114 with the VLT
We present the first results on the VLT/FORS-1 spectroscopic survey of
amplified sources and multiple images in the lensing cluster AC114. Background
sources were selected in the cluster core, close to the critical lines, using
photometric redshifts combined with lensing inversion criteria. Spectroscopic
results are given, together with a brief summary of the properties of some of
these high-z galaxies.Comment: 4pages. To appear in the Proceedings of the XXth Moriond Astrophysics
Meeting "Cosmological Physics with Gravitational Lensing", eds. J.-P. Kneib,
Y. Mellier, M. Moniez and J. Tran Thanh Van, Les Arcs, France, March
11th-18th 200
Probing vortices in 4He nanodroplets
We present static and dynamical properties of linear vortices in 4He droplets
obtained from Density Functional calculations. By comparing the adsorption
properties of different atomic impurities embedded in pure droplets and in
droplets where a quantized vortex has been created, we suggest that Ca atoms
should be the dopant of choice to detect vortices by means of spectroscopic
experiments.Comment: Typeset using Revtex4, 4 pages and 2 Postscript file
- …
