1,065 research outputs found

    Nyomfémek atomspektrometriás meghatározása és kötésformáinak számítógépes modellezése gyógyszeralapanyag-mátrixban kelátcserélőn történő elválasztáshoz = Atomspectrometric determination of trace metals and computer modeling of trace metal speciation in drug matrix for chelating exchanger separation

    Get PDF
    Tanulmányoztuk Pt (II)-Pt(IV), Sb(III)-Sb(V), Te(IV)-Te(VI) megkötődését imonodiecetsav-etil-cellulóz (IDAEC), diamino-dietil-amin (DEN)- és oxim-cellulóz kelátcserélőkön és ezek alapján on-line áramlásos elválasztási és dúsítási módszert dolgoztunk ki gyógyszer hatóanyagok GFAAS elemzéséhez. Platinafémek, Sr, alkálifémek, Mo, Sb és Te közvetlen ICP-MS analízisét oldottuk meg gyógyszeralapanyagokban ill. biológiai mátrixban. Vizsgáltuk IDAEC cserélőn Pb, Mn és V áramlásos rendszerben történő megkötésének hatékonyságát gyógyszeralapanyagok oldatából és összevethetőnek találtuk a homogén egyensúlyra számolt megoszlási értékekkel. Meghatároztuk az IDAEC Pb-, Mn- és V-ionokkal képzett specieszeinek a számításokhoz szükséges stabilitási állandóit. Karsztvizek terepi frakcionálását oldottuk meg különböző fizikai-kémiai állapotú Mn-, V-, Ti-, Mo- és U-formák GFAAS és ICP-MS meghatározásához membránszűrés, valamint dinamikus és batch IDAEC- megkötés segítségével. | The sorption of Pt(II,IV), Sb(III,V), Te(IV,VI) was studied on iminodiaceticacid ethyl ?cellulose (IDAEC), 2,2?-diaminodiethylamine (DEN)-, oxime and sulphoxine cellulose and based on these results on-line flow-injection separation and preconcentration method was worked out for GFAAS determination of metal impurities in pharmaceutical substances. Direct ICP-MS analysis was optimized for Pt metals, Sr, alkali metals, Mo, Sb and Te in drug substances and/ or in human biological materials. The efficiency of dynamic sorption concerning Pb, Mn and V on IDAEC microcolumn from solution of pharmaceuticals was investigated and these results was agreed with calculated distribution values in homogeneous media The stability constants of different chelate species formed by IDAEC with Pb, Mn and V were determined for distribution calculations. In situ fractionation of different physico-chemical forms of Mn, V, Ti and U in karstic groundwaters was developed by means of membrane filtration and dynamic and batch sorption on IDAEC for GFAAS and ICP-MS determination

    Fingerprint analysis of biological samples using ICP-MS and IR-MS

    Get PDF
    Atomic spectroscopy based analytical techniques can generate fingerprints encompassing the vast majority of elements found in the periodic table as well as ratios of their stable isotopes. These highly multivariate fingerprints have laid the foundation of many recent studies within environmental, geological, agricultural and food science. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ICP-mass spectrometry (ICP-MS) still dominate multi-elemental analyses of biological samples while stable isotopes of the light mass elements H, C, N, O and S are measured by isotope ratio-mass spectrometry (IR-MS). However, it has recently been shown that rather unexplored analytical methods such as semi-quantitative ICP-MS and compound-specific isotope analysis (CSIA) can generate novel information suitable for evaluating the authenticity of plant based food products (1-3). Most plant based studies using atomic spectroscopy have focused on the essential nutrients: B, Mg, P, S, K, Ca, Mn, Fe, Ni, Cu, Zn, Mo and selected heavy metals such as Cd and Pb (4). However, plants contain traces of most of the periodic table, which can be measured by semi-quantitative ICP-MS (1-2). This represents a fast method for elemental fingerprinting in the mass range 7Li to 238U, but the accuracy suffers from the simplified calibration procedure that this technique is based on. The combination of semi-quantitative ICP-MS and multivariate statistics (chemometrics) efficiently minimize this problem and constitute a promising tool for authentication of plant products according to their geographical origin and production form (2). Stable isotope analysis complements elemental fingerprinting by targeting specific biological processes and their impact on the isotopic plant composition. This has recently proven valuable for authenticating organically grown plant products – especially when focusing on selected isotope pairs in plant derived compounds such as 18O/16O in NO3- using CSIA (3). Cases of novel atomic spectroscopy based food authentications will be presented at the conference
    corecore